Breaking the Diffraction Barrier: Super-Resolution Imaging of Cells

[1]  X. Zhuang,et al.  Superresolution Imaging of Chemical Synapses in the Brain , 2010, Neuron.

[2]  Michael W. Davidson,et al.  Nanoscale architecture of integrin-based cell adhesions , 2010, Nature.

[3]  Shigeki Iwanaga,et al.  Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores. , 2010, Journal of the American Chemical Society.

[4]  Christian Eggeling,et al.  Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength. , 2010, Biophysical journal.

[5]  Charles Kervrann,et al.  Condensed Mitotic Chromosome Structure at Nanometer Resolution Using PALM and EGFP- Histones , 2010, PloS one.

[6]  Mike Heilemann,et al.  Live-cell super-resolution imaging with trimethoprim conjugates , 2010, Nature Methods.

[7]  Xiaowei Zhuang,et al.  Coupling between clathrin-dependent endocytic budding and F-BAR-dependent tubulation in a cell-free system , 2010, Nature Cell Biology.

[8]  L. Shapiro,et al.  A spindle-like apparatus guides bacterial chromosome segregation , 2010, Nature Cell Biology.

[9]  Steven Chu,et al.  Subnanometre single-molecule localization, registration and distance measurements , 2010, Nature.

[10]  Hari Shroff,et al.  Single-Molecule Discrimination of Discrete Perisynaptic and Distributed Sites of Actin Filament Assembly within Dendritic Spines , 2010, Neuron.

[11]  Jianyong Tang,et al.  Near-isotropic 3D optical nanoscopy with photon-limited chromophores , 2010, Proceedings of the National Academy of Sciences.

[12]  J. Lippincott-Schwartz,et al.  Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. , 2010, Journal of the American Chemical Society.

[13]  Suliana Manley,et al.  Superresolution imaging using single-molecule localization. , 2010, Annual review of physical chemistry.

[14]  W E Moerner,et al.  Single-molecule spectroscopy and imaging of biomolecules in living cells. , 2010, Analytical chemistry.

[15]  S. Hell,et al.  Two-color STED microscopy reveals different degrees of colocalization between hexokinase-I and the three human VDAC isoforms , 2010, PMC biophysics.

[16]  S. E. Irvine,et al.  Fast Sted Microscopy with Continuous Wave Fiber Lasers References and Links , 2022 .

[17]  S. Weiss,et al.  Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI) , 2009, Proceedings of the National Academy of Sciences.

[18]  Bernardo L. Sabatini,et al.  Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two-Photon Laser Scanning Microscopy , 2009, Neuron.

[19]  Gael Moneron,et al.  Two-photon excitation STED microscopy. , 2009, Optics express.

[20]  D. Owald,et al.  Maturation of active zone assembly by Drosophila Bruchpilot , 2009, The Journal of cell biology.

[21]  M. Gustafsson,et al.  Subdiffraction resolution in continuous samples , 2009 .

[22]  Mark Bates,et al.  Super-resolution fluorescence microscopy. , 2009, Annual review of biochemistry.

[23]  Ned S. Wingreen,et al.  Self-Organization of the Escherichia coli Chemotaxis Network Imaged with Super-Resolution Light Microscopy , 2009, PLoS biology.

[24]  Roman Schmidt,et al.  Mitochondrial cristae revealed with focused light. , 2009, Nano letters.

[25]  Bryant B. Chhun,et al.  Super-Resolution Video Microscopy of Live Cells by Structured Illumination , 2009, Nature Methods.

[26]  Alexander Egner,et al.  Tuning of synapse number, structure and function in the cochlea , 2009, Nature Neuroscience.

[27]  J. Lippincott-Schwartz,et al.  Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure , 2009, Proceedings of the National Academy of Sciences.

[28]  Samuel J. Lord,et al.  Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function , 2009, Proceedings of the National Academy of Sciences.

[29]  Christian Eggeling,et al.  STED microscopy reveals crystal colour centres with nanometric resolution. , 2009 .

[30]  S. Hell,et al.  Direct observation of the nanoscale dynamics of membrane lipids in a living cell , 2009, Nature.

[31]  Suliana Manley,et al.  Photoactivatable mCherry for high-resolution two-color fluorescence microscopy , 2009, Nature Methods.

[32]  Jianyong Tang,et al.  Three-Dimensional Super-resolution Imaging of Thick Biological Samples , 2009, Microscopy and Microanalysis.

[33]  T. Bonhoeffer,et al.  Live-cell imaging of dendritic spines by STED microscopy , 2008, Proceedings of the National Academy of Sciences.

[34]  A. Ting,et al.  Fluorescent probes for super-resolution imaging in living cells , 2008, Nature Reviews Molecular Cell Biology.

[35]  Michael A Thompson,et al.  Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP , 2008, Nature Methods.

[36]  M. Gustafsson,et al.  Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. , 2008, Biophysical journal.

[37]  M. Gustafsson,et al.  Subdiffraction Multicolor Imaging of the Nuclear Periphery with 3D Structured Illumination Microscopy , 2008, Science.

[38]  S. Hess,et al.  Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples , 2008, Nature Methods.

[39]  S. Hell,et al.  Spherical nanosized focal spot unravels the interior of cells , 2008, Nature Methods.

[40]  Nam Ki Lee,et al.  Single-molecule approach to molecular biology in living bacterial cells. , 2008, Annual review of biophysics.

[41]  E. Betzig,et al.  Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics , 2008, Nature Methods.

[42]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[43]  S. Hell,et al.  Fluorescence nanoscopy with optical sectioning by two-photon induced molecular switching using continuous-wave lasers. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[44]  J. Lippincott-Schwartz,et al.  High-density mapping of single-molecule trajectories with photoactivated localization microscopy , 2008, Nature Methods.

[45]  S. Hell,et al.  Dynamic far-field fluorescence nanoscopy , 2007 .

[46]  S. Hell,et al.  STED microscopy with continuous wave beams , 2007, Nature Methods.

[47]  Samuel T. Hess,et al.  Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories , 2007, Proceedings of the National Academy of Sciences.

[48]  Mark Bates,et al.  Multicolor Super-Resolution Imaging with Photo-Switchable Fluorescent Probes , 2007, Science.

[49]  Thorsten Lang,et al.  Anatomy and Dynamics of a Supramolecular Membrane Protein Cluster , 2007, Science.

[50]  W E Moerner,et al.  New directions in single-molecule imaging and analysis , 2007, Proceedings of the National Academy of Sciences.

[51]  Christian Eggeling,et al.  Fluorescence Nanoscopy in Whole Cells by Asynchronous Localization of Photoswitching Emitters , 2007, Biophysical journal.

[52]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[53]  Christian Eggeling,et al.  Breaking the diffraction barrier in fluorescence microscopy by optical shelving. , 2007, Physical review letters.

[54]  S. Hell,et al.  Two-color far-field fluorescence nanoscopy. , 2007, Biophysical journal.

[55]  S. Hell,et al.  Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy , 2007, Neuroscience.

[56]  R. Hochstrasser,et al.  Wide-field subdiffraction imaging by accumulated binding of diffusing probes , 2006, Proceedings of the National Academy of Sciences.

[57]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[58]  Ken Jacobson,et al.  Analysis method for measuring submicroscopic distances with blinking quantum dots. , 2006, Biophysical journal.

[59]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[60]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[61]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[62]  Stephan J. Sigrist,et al.  Bruchpilot Promotes Active Zone Assembly, Ca2+ Channel Clustering, and Vesicle Release , 2006, Science.

[63]  R. Tsien,et al.  The Fluorescent Toolbox for Assessing Protein Location and Function , 2006, Science.

[64]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[65]  Christian Eggeling,et al.  Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  M. Gustafsson Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  R. Heintzmann,et al.  Superresolution by localization of quantum dots using blinking statistics. , 2005, Optics express.

[68]  J. Spudich,et al.  Single molecule high-resolution colocalization of Cy3 and Cy5 attached to macromolecules measures intramolecular distances through time. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  L. Mets,et al.  Nanometer-localized multiple single-molecule fluorescence microscopy. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[70]  T. Ha,et al.  Single-molecule high-resolution imaging with photobleaching. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[71]  S. Hell Toward fluorescence nanoscopy , 2003, Nature Biotechnology.

[72]  W. Webb,et al.  Nonlinear magic: multiphoton microscopy in the biosciences , 2003, Nature Biotechnology.

[73]  Paul R. Selvin,et al.  Myosin V Walks Hand-Over-Hand: Single Fluorophore Imaging with 1.5-nm Localization , 2003, Science.

[74]  R. Heintzmann,et al.  Saturated patterned excitation microscopy--a concept for optical resolution improvement. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[75]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[76]  M. Gustafsson Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy , 2000, Journal of microscopy.

[77]  S. Hell,et al.  Subdiffraction resolution in far-field fluorescence microscopy. , 1999, Optics letters.

[78]  Rainer Heintzmann,et al.  Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating , 1999, European Conference on Biomedical Optics.

[79]  Jürgen Köhler,et al.  3-Dimensional super-resolution by spectrally selective imaging , 1998 .

[80]  David A. Agard,et al.  Sevenfold improvement of axial resolution in 3D wide-field microscopy using two objective lenses , 1995, Electronic Imaging.

[81]  S. Hell,et al.  Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. , 1994, Optics letters.

[82]  Stefan W. Hell,et al.  Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation , 1992 .

[83]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[84]  S. Brenner,et al.  The structure of the ventral nerve cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[85]  E. Synge XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region , 1928 .

[86]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[87]  Benjamin Harke,et al.  Three-dimensional nanoscopy of colloidal crystals. , 2008, Nano letters.

[88]  F. Pinaud,et al.  Ultrahigh-resolution multicolor colocalization of single fluorescent probes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[89]  M Isaacson,et al.  Near Field Scanning Optical Microscopy (NSOM): Development and Biophysical Applications. , 1986, Biophysical journal.

[90]  M. Isaacson,et al.  Development of a 500 Å spatial resolution light microscope: I. light is efficiently transmitted through λ/16 diameter apertures , 1984 .