Two-Dimensional Platinum Diselenide Waveguide-Integrated Infrared Photodetectors

Low-cost, easily integrable photodetectors (PDs) for silicon (Si) photonics are still a bottleneck for photonic-integrated circuits (PICs), especially for wavelengths above 1.8 μm. Multilayered platinum diselenide (PtSe2) is a semi-metallic two-dimensional (2D) material that can be synthesized below 450 °C. We integrate PtSe2-based PDs directly by conformal growth on Si waveguides. The PDs operate at 1550 nm wavelength with a maximum responsivity of 11 mA/W and response times below 8.4 μs. Fourier-transform IR spectroscopy in the wavelength range from 1.25 to 28 μm indicates the suitability of PtSe2 for PDs far into the IR wavelength range. Our PtSe2 PDs integrated by direct growth outperform PtSe2 PDs manufactured by standard 2D layer transfer. The combination of IR responsivity, chemical stability, selective and conformal growth at low temperatures, and the potential for high carrier mobility makes PtSe2 an attractive 2D material for optoelectronics and PICs.

[1]  S. Suckow,et al.  Hybrid Devices by Selective and Conformal Deposition of PtSe2 at Low Temperatures , 2021, Advanced Functional Materials.

[2]  Takhee Lee,et al.  Ultrasensitive Photodetection in MoS2 Avalanche Phototransistors , 2021, Advanced science.

[3]  P. Hurley,et al.  Coexistence of Negative and Positive Photoconductivity in Few‐Layer PtSe2 Field‐Effect Transistors , 2021, Advanced Functional Materials.

[4]  G. Duesberg,et al.  Correlating Nanocrystalline Structure with Electronic Properties in 2D Platinum Diselenide , 2021, Advanced Functional Materials.

[5]  N. Roxhed,et al.  Large-area integration of two-dimensional materials and their heterostructures by wafer bonding , 2021, Nature Communications.

[6]  J. Y. Kwak,et al.  Doping-Free All PtSe2 Transistor via Thickness-Modulated Phase Transition. , 2021, ACS applied materials & interfaces.

[7]  D. Wei,et al.  Broadband photodetector based on 2D layered PtSe2 / silicon heterojunction at room-temperature , 2020 .

[8]  Yue‐Xing Chen,et al.  Two-Dimensional Platinum Diselenide: Synthesis, Emerging Applications, and Future Challenges , 2020, Nano-micro letters.

[9]  W. Duan,et al.  Growth of large scale PtTe, PtTe2 and PtSe2 films on a wide range of substrates , 2020, Nano Research.

[10]  P. Hurley,et al.  Isotropic conduction and negative photoconduction in ultrathin PtSe2 films , 2020, 2007.05842.

[11]  G. Duesberg,et al.  Spectroscopic thickness and quality metrics for PtSe2 layers produced by top-down and bottom-up techniques , 2020, 2D Materials.

[12]  Y. Tong,et al.  High-speed infrared two-dimensional platinum diselenide photodetectors , 2020 .

[13]  A. Vescan,et al.  Highly Responsive Flexible Photodetectors Based on MOVPE Grown Uniform Few-Layer MoS2 , 2020 .

[14]  B. Dong,et al.  High‐Responsivity Mid‐Infrared Black Phosphorus Slow Light Waveguide Photodetector , 2020, Advanced Optical Materials.

[15]  Zhenhua Ni,et al.  High-performance silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 μm. , 2020, Light, science & applications.

[16]  James C. M. Hwang,et al.  Large-Scale Fabrication of Submicrometer-Gate-Length MOSFETs With a Trilayer PtSe2 Channel Grown by Molecular Beam Epitaxy , 2020, IEEE Transactions on Electron Devices.

[17]  Samaresh Das,et al.  Optically Pumped Broadband Terahertz Modulator Based on Nanostructured PtSe2 Thin Films , 2020, Advanced Optical Materials.

[18]  J. Leuthold,et al.  Waveguide-integrated van der Waals heterostructure photodetector at telecom band with high speed and high responsivity , 2019, Nature Nanotechnology.

[19]  Zhi-bo Liu,et al.  Thickness-dependent ultrafast nonlinear absorption properties of PtSe2 films with both semiconducting and semimetallic phases , 2019 .

[20]  S. Solares,et al.  Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits , 2019, Nature Photonics.

[21]  Conor P. Cullen,et al.  Quantum confinement-induced semimetal-to-semiconductor evolution in large-area ultra-thin PtSe2 films grown at 400 °C , 2019, npj 2D Materials and Applications.

[22]  Eilam Yalon,et al.  Engineering Field Effect Transistors with 2D Semiconducting Channels: Status and Prospects , 2019, Advanced Functional Materials.

[23]  T. Zhai,et al.  2D Metal Chalcogenides for IR Photodetection. , 2019, Small.

[24]  Guangjian Wu,et al.  Large‐area high quality PtSe 2 thin film with versatile polarity , 2019, InfoMat.

[25]  D. Neumaier,et al.  Integrating graphene into semiconductor fabrication lines , 2019, Nature Materials.

[26]  Timo Aalto,et al.  Open-Access Silicon Photonics Platforms in Europe , 2019, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Fang Liu,et al.  Optical properties of chemical vapor deposition-grown PtSe2 characterized by spectroscopic ellipsometry , 2019, 2D Materials.

[28]  Conor P. Cullen,et al.  PtSe2 grown directly on polymer foil for use as a robust piezoresistive sensor , 2019, 2D Materials.

[29]  Yeonwoong Jung,et al.  Horizontal-to-Vertical Transition of 2D Layer Orientation in Low-Temperature Chemical Vapor Deposition-Grown PtSe2 and Its Influences on Electrical Properties and Device Applications. , 2019, ACS applied materials & interfaces.

[30]  A. Majumdar,et al.  Van der Waals materials integrated nanophotonic devices [Invited] , 2019, Optical Materials Express.

[31]  Chengkuo Lee,et al.  Waveguide-Integrated Black Phosphorus Photodetector for Mid-Infrared Applications. , 2019, ACS nano.

[32]  David-Wei Zhang,et al.  Controlled Doping of Wafer‐Scale PtSe2 Films for Device Application , 2018, Advanced Functional Materials.

[33]  G. Konstantatos Current status and technological prospect of photodetectors based on two-dimensional materials , 2018, Nature Communications.

[34]  Antonio D’Errico,et al.  Graphene-based integrated photonics for next-generation datacom and telecom , 2018, Nature Reviews Materials.

[35]  T. Zhai,et al.  Inversion Symmetry Broken 2D 3R‐MoTe2 , 2018 .

[36]  Q. Bao,et al.  Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers. , 2018, ACS applied materials & interfaces.

[37]  H. Kuo,et al.  Phase-Engineered PtSe2 -Layered Films by a Plasma-Assisted Selenization Process toward All PtSe2 -Based Field Effect Transistor to Highly Sensitive, Flexible, and Wide-Spectrum Photoresponse Photodetectors. , 2018, Small.

[38]  Qi Jie Wang,et al.  Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor , 2018, Nature Communications.

[39]  G. Duesberg,et al.  Highly Sensitive Electromechanical Piezoresistive Pressure Sensors Based on Large-Area Layered PtSe2 Films , 2018, Nano letters.

[40]  Daniel Schall,et al.  Record High Bandwidth Integrated Graphene Photodetectors for Communication Beyond 180 Gb/s , 2018, 2018 Optical Fiber Communications Conference and Exposition (OFC).

[41]  Andras Kis,et al.  Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide , 2018, Nature Communications.

[42]  G. Duesberg,et al.  Electrical devices from top-down structured platinum diselenide films , 2018, npj 2D Materials and Applications.

[43]  P. Hurley,et al.  Wide Spectral Photoresponse of Layered Platinum Diselenide-Based Photodiodes. , 2018, Nano letters.

[44]  Tong Zhang,et al.  Broadband MoS2 Field‐Effect Phototransistors: Ultrasensitive Visible‐Light Photoresponse and Negative Infrared Photoresponse , 2018, Advanced materials.

[45]  Lain‐Jong Li,et al.  Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability. , 2017, Chemical reviews.

[46]  Wenxu Zhang,et al.  The mechanism of layer number and strain dependent bandgap of 2D crystal PtSe2 , 2017 .

[47]  Guo-Qiang Lo,et al.  Silicon photonic platforms for mid-infrared applications [Invited] , 2017 .

[48]  L. Zhuang,et al.  Van der Waals Epitaxial Growth of Atomic Layered HfS2 Crystals for Ultrasensitive Near‐Infrared Phototransistors , 2017, Advanced materials.

[49]  S. Lau,et al.  High‐Electron‐Mobility and Air‐Stable 2D Layered PtSe2 FETs , 2017, Advanced materials.

[50]  Qiang Li,et al.  Facile Synthesis of Single Crystal PtSe2 Nanosheets for Nanoscale Electronics , 2016, Advanced materials.

[51]  Tibor Grasser,et al.  Long-Term Stability and Reliability of Black Phosphorus Field-Effect Transistors. , 2016, ACS nano.

[52]  Conor P. Cullen,et al.  High-Performance Hybrid Electronic Devices from Layered PtSe2 Films Grown at Low Temperature. , 2016, ACS nano.

[53]  M. Lemme,et al.  Graphene and Two-Dimensional Materials for Optoelectronic Applications , 2016 .

[54]  Amos Martinez,et al.  Optical modulators with 2D layered materials , 2016, Nature Photonics.

[55]  Kenji Watanabe,et al.  Picosecond photoresponse in van der Waals heterostructures. , 2015, Nature nanotechnology.

[56]  Zhipei Sun,et al.  Optical modulators with 2 D layered materials , 2016 .

[57]  Jannik C. Meyer,et al.  Raman characterization of platinum diselenide thin films , 2015, 1512.09317.

[58]  A. Gnudi,et al.  Going ballistic : Graphene hot electron transistors , 2015, 1509.01025.

[59]  Michal Lipson,et al.  Graphene electro-optic modulator with 30 GHz bandwidth , 2015, Nature Photonics.

[60]  Lianmao Peng,et al.  Comparison of mobility extraction methods based on field-effect measurements for graphene , 2015 .

[61]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[62]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[63]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[64]  Daniel Schall,et al.  50 GBit/s Photodetectors Based on Wafer-Scale Graphene for Integrated Silicon Photonic Communication Systems , 2014 .

[65]  Phaedon Avouris,et al.  Black phosphorus photodetector for multispectral, high-resolution imaging. , 2014, Nano letters.

[66]  G. Steele,et al.  Ultrahigh Photoresponse of Few‐Layer TiS3 Nanoribbon Transistors , 2014, 1406.5003.

[67]  Yanrong Li,et al.  Two-dimensional semiconductors with possible high room temperature mobility , 2014, Nano Research.

[68]  P. Miró,et al.  Two dimensional materials beyond MoS2: noble-transition-metal dichalcogenides. , 2014, Angewandte Chemie.

[69]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[70]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature nanotechnology.

[71]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[72]  T. Fromherz,et al.  CMOS-compatible graphene photodetector covering all optical communication bands , 2013, Nature Photonics.

[73]  Soon Cheol Hong,et al.  High‐Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared , 2012, Advanced materials.

[74]  S. Min,et al.  MoS₂ nanosheet phototransistors with thickness-modulated optical energy gap. , 2012, Nano letters.

[75]  Xiang Zhang,et al.  A graphene-based broadband optical modulator , 2011, Nature.

[76]  Z. Sheng,et al.  InGaAs PIN photodetectors integrated on silicon-on-insulator waveguides. , 2010, Optics express.

[77]  M. Geis,et al.  Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response. , 2009, Optics express.

[78]  Antoni Rogalski,et al.  HgCdTe infrared detector material: history, status and outlook , 2005 .

[79]  Kazumi Wada,et al.  High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform , 2005 .