Hydrolysis of phosphate esters catalyzed by copper(II)-triamine complexes. The effect of triamine ligands on the reactivity of the copper(II) catalysts

[1]  A. Martell,et al.  Hydrolytic Tendencies of Metal Chelate Compounds. I. Cu(II) Chelates1 , 1957 .

[2]  G. Schwarzenbach,et al.  Metallkomplexe mit Polyaminen XII: Mit cis-cis-1,3,5-Triaminocyclohexan , 1962 .

[3]  N. F. Curtis Some acetato–amine complexes of nickel(II), copper(II), and zinc(II) , 1968 .

[4]  R. F. Childers,et al.  Hindered-ligand systems. V. Stability constants for some metal complexes of cis,cis-1,3,5-triaminocyclohexane , 1971 .

[5]  L. Marzilli,et al.  Reactions of cobalt(II) Schiff's base complexes with organic halides. Atom-transfer mechanisms , 1971 .

[6]  R. J. Angelici,et al.  Stability constants of N-methyl- and N-ethyl-substituted diethylenetriamine complexes of copper(II) , 1971 .

[7]  B. Skelton,et al.  Crystal and molecular structure of catena-µ-acetato-[di-(3-aminopropyl)amine]copper(II) perchlorate , 1972 .

[8]  R. Barbucci,et al.  Size of the chelate rings and stability of some transition metalII ion complexes with linear aliphatic triamines: 1,4,8-triazaoctane(2,3-tri) , 1973 .

[9]  A. Lever,et al.  Relation between electronic spectra and heat of formation of some copper-polyamine complexes and the macrocyclic effect , 1976 .

[10]  L. J. Zompa,et al.  Metal complexes of cyclic triamines. 1. Complexes of 1,4,7-triazacyclononane ([9]aneN3) with nickel(II), copper(II), and zinc(II) , 1976 .

[11]  L. J. Zompa Metal complexes of cyclic triamines. 2. Stability and electronic spectra of nickel(II), copper(II), and zinc(II) complexes containing nine- through twelve-membered cyclic triamine ligands , 1978 .

[12]  P. Schaber,et al.  Preparation and crystal and molecular structure of dibromo(1,4,7-triazacyclononane)copper(II) , 1979 .

[13]  H. Schugar,et al.  Molecular structure of dichloro(1,4,7-triazacyclononane)copper(II), a macrocyclic triamine complex with an unusually small formation constant , 1980 .

[14]  L. Lindoy,et al.  Hydrolysis of phosphate esters bound to cobalt(III). Kinetics and mechanism of intramolecular attack of hydroxide on coordinated 4-nitrophenyl phosphate , 1983 .

[15]  R. Moss,et al.  Cleavage of phosphate esters by hydroxyl-functionalized micellar and vesicular reagents , 1983 .

[16]  P. Hendry,et al.  Base hydrolysis of the penta-ammine(trimethyl phosphate)iridium(III) ion , 1984 .

[17]  X. Zou,et al.  Cobalt(III) complex promoted hydrolysis of phosphate diesters: change in rate-determining step with change in phosphate diester reactivity , 1988 .

[18]  J. Morrow,et al.  Hydrolysis of phosphate diesters with copper(II) catalysts , 1988 .

[19]  P. Hendry,et al.  Metal ion promoted phosphate ester hydrolysis. Intramolecular attack of coordinated hydroxide ion , 1989 .

[20]  W. Trogler,et al.  Hydrolysis of phosphodiesters with nickel(II), copper(II), zinc(II), palladium(II), and platinum(II) complexes , 1990 .

[21]  P. Hendry,et al.  Reactivity of coordinated phosphate esters: pentaamminecobalt(III) complexes , 1990 .

[22]  N. Govan,et al.  A lanthanum macrocycle catalysed hydrolysis of a phosphate triester , 1990 .

[23]  J. Chin,et al.  Developing artificial hydrolytic metalloenzymes by a unified mechanistic approach , 1991 .

[24]  Tohru Koike,et al.  Roles of zinc(II) ion in phosphatases. A model study with zinc(II)-macrocyclic polyamine complexes , 1991 .

[25]  S. Hikichi,et al.  Phosphate ester cleavage with a zinc hydroxide complex. Formation and crystal structure of a dinuclear zinc complex bridged with a phosphate monoester , 1992 .

[26]  J. Chin,et al.  Dimethyl phosphate hydrolysis at neutral pH , 1992 .

[27]  T. C. Bruice,et al.  Chemistry of phosphodiesters, DNA, and models. 2. The hydrolysis of bis(8-hydroxyquinoline) phosphate in the absence and presence of metal ions , 1992 .

[28]  K. Karlin Metalloenzymes, structural motifs, and inorganic models. , 1993, Science.

[29]  H. Schneider,et al.  Catalysis of the Hydrolysis of Phosphoric Acid Diesters by Lanthanide Ions and the Influence of Ligands , 1993 .

[30]  J. Burstyn,et al.  Selective catalytic hydrolysis of a simple phosphodiester by a macrocyclic copper(II) complex , 1993 .

[31]  J. Chin,et al.  Synergistic effect between lanthanum(III) and hydrogen peroxide in phosphate diester cleavage , 1993 .

[32]  A. W. Czarnik,et al.  Functional group convergency in a binuclear dephosphorylation reagent , 1993 .

[33]  J. Chin,et al.  Double Lewis Acid Activation in Phosphate Diester Cleavage , 1993 .

[34]  D. Wahnon,et al.  Dramatic ligand effect in copper(II) complex promoted transesterification of a phosphate diester , 1994 .

[35]  R. Breslow,et al.  Cleavage of Phosphate Esters by a Cyclodextrin Dimer Catalyst That Binds the Substrates Together with La3+ and Hydrogen Peroxide , 1994 .

[36]  M. Komiyama,et al.  Cooperation of lanthanum ion and non-ianthanide metal ions for the hydrolysis of bis(4-nitrophenyl)phosphate , 1994 .

[37]  T. C. Bruice,et al.  Phosphonate Ester Hydrolysis Catalyzed by Two Lanthanum Ions. Intramolecular Nucleophilic Attack of Coordinated Hydroxide and Lewis Acid Activation , 1995 .

[38]  Ronald Breslow,et al.  SELECTIVE HYDROLYSIS OF PHOSPHATE ESTERS, NITROPHENYL PHOSPHATES AND UPU, BY DIMERIC ZINC COMPLEXES DEPENDS ON THE SPACER LENGTH , 1995 .

[39]  J. Chin,et al.  La(III)-hydrogen peroxide cooperativity in phosphate diester cleavage. A mechanistic study , 1995 .

[40]  D. Wahnon,et al.  Reactivity of Copper(II) Hydroxides and Copper(II) Alkoxides for Cleaving an Activated Phosphate Diester , 1995 .

[41]  D. Wahnon,et al.  Hydrolysis of a Phosphate Diester Doubly Coordinated to a Dinuclear Cobalt(III) Complex: A Novel Mechanism , 1995 .

[42]  Ismail O. Kady,et al.  HYDROLYSIS OF PHOSPHOTRIESTERS PROMOTED BY A ZINC(II) COMPLEX BEARING AN ALCOHOL PENDANT , 1995 .

[43]  T. N. Margulis,et al.  Binuclear Copper(II) Complexes of Bis(1,4,7-triazacyclononane) Ligands Containing Tri- and Tetramethylene Bridging Groups. An Equilibrium and Structural Study , 1995 .

[44]  R. Krämer,et al.  Metal–ammonium cooperativity in phosphodiester hydrolysis , 1995 .

[45]  Ismail O. Kady,et al.  Metal-catalyzed intramolecular hydrolysis of phosphate esters , 1995 .

[46]  J. Morrow,et al.  Metal ion promoted attack of an alcohol on a phosphate diester: modelling the role of metal ions in RNA self-splicing reactions , 1995 .

[47]  Nicholas H Williams,et al.  Metal-ion catalysed phosphate diester transesterification: quantifying double Lewis-acid activation , 1996 .

[48]  E. Hegg,et al.  COPPER(II) MACROCYCLES CLEAVE SINGLE-STRANDED AND DOUBLE-STRANDED DNA UNDER BOTH AEROBIC AND ANAEROBIC CONDITIONS , 1996 .

[49]  J. Burstyn,et al.  Characterization of Transition States in Dichloro (1,4,7-Triazacyclononane) Copper (II)-Catalyzed Activated Phosphate Diester Hydrolysis , 1996 .

[50]  J. Burstyn,et al.  Mechanistic Studies of Dichloro(1,4,7-triazacyclononane)copper(II)-Catalyzed Phosphate Diester Hydrolysis† , 1996 .

[51]  Toshiji Tada,et al.  Thermodynamic and Kinetic Studies of Zinc(II)-Triamine Complexes as Models of CA and AP , 1996 .

[52]  Kimoon Kim,et al.  Catalytic Hydrolysis of Phosphate Diesters by Lanthanide(III) Cryptate (2.2.1) Complexes. , 1996, Inorganic chemistry.

[53]  L. Kiessling,et al.  Hydrolysis of Double-Stranded and Single-Stranded RNA in Hairpin Structures by the Copper(II) Macrocycle Cu([9]aneN(3))Cl(2). , 1997, Inorganic chemistry.

[54]  Y. Fujii,et al.  HYDROLYTIC CLEAVAGE OF DNA BY A NOVEL COPPER(II) COMPLEX WITH CIS,CIS-1,3,5-TRIAMINOCYCLOHEXANE , 1997 .