Postglacial variations in the level of the sea: Implications for climate dynamics and solid‐Earth geophysics

Throughout the latter half of the Pleistocene epoch of Earth history, beginning ∼900 kyr ago, the climate system has been dominated by an intense oscillation between full glacial and interglacial conditions. During each glacial stage, global sea level fell by ∼120 m on average, as extensive ice sheets formed and thickened on the surfaces of the continents at high northern (primarily) and southern latitudes. Within each cycle this glaciation phase lasted ∼90 kyr and was followed by a much more rapid deglaciation event which terminated after ∼10 kyr and which returned the system to the interglacial state. The period of the canonical glacial cycle has remained very close to 100 kyr since its inception in mid-Pleistocene time. Because of the magnitude of the mass that was redistributed over the surface of the Earth during each such glacial cycle and because of the viscoelastic nature of the rheology of the planetary mantle, these shifts in surface mass load induced variations in the shape of the planet that have been indelibly transcribed into the geological record of sea level variability. Indeed, the geological, geophysical, and even astronomical signatures of this process, which is continuing today, are now being measured with unprecedented precision using the methods of space geodesy and have thereby begun to provide important new scientific insight and understanding, both of the interior of the solid Earth and of the climate system variability with which the ice ages themselves are associated. In this article my purpose is to bring together, in a single review, an assessment of where we currently stand scientifically with regard to understanding both of these aspects of the ice ages. Although the discussion will not address in any detail the fascinating issue of ice age climate, since this topic is sufficiently complex of itself to require a detailed review of its own, I will nevertheless attempt to briefly summarize the current state of understanding of the physical processes that are responsible for the occurrence of the ice age cycle, by way of providing a more complete context in which to appreciate the main lines of argument that will be developed.

[1]  B. Hager,et al.  Geoid Anomalies in a Dynamic Earth , 1984 .

[2]  W. Peltier,et al.  Global Sea Level Rise and the Greenhouse Effect: Might They Be Connected? , 1989, Science.

[3]  W. Peltier,et al.  Glacial isostatic adjustment and Earth rotation: Refined constraints on the viscosity of the deepest mantle , 1996 .

[4]  A. Cazenave,et al.  Geodynamic parameters derived from 7 years of laser data on Lageos , 1991 .

[5]  W. Peltier,et al.  Mantle viscosity from the simultaneous inversion of multiple data sets pertaining to postglacial rebound , 1996 .

[6]  T. Barnett The estimation of «global» sea level change: a problem of uniqueness , 1984 .

[7]  W. Peltier,et al.  Present-day secular variations in the zonal harmonics of earth's geopotential , 1993 .

[8]  W. Peltier,et al.  A simple model of the Atlantic thermohaline circulation: Internal and forced variability with paleoclimatological implications , 1995 .

[9]  Ragnar. Lidén Den senkvartära strandförskjutningens förlopp och kronologi i Ångermanland , 1938 .

[10]  J. Laskar,et al.  Orbital, precessional, and insolation quantities for the earth from -20 Myr to +10 Myr. , 1993 .

[11]  Louis Agassiz Études sur les glaciers , 1840 .

[12]  D. Argus Postglacial rebound from VLBI geodesy: On establishing vertical reference , 1996 .

[13]  R. Armstrong,et al.  The Physics of Glaciers , 1981 .

[14]  Thomas R. Quinn,et al.  A Three Million Year Integration of the Earth's Orbit , 1991 .

[15]  Seismic Anisotropy in the Deep Mantle, Boundary Layers and the Geometry of Mantle Convection , 1998 .

[16]  T. Ahrens,et al.  Sound velocities at high pressure and temperature and their geophysical implications , 1992 .

[17]  J. Burns,et al.  Dust bands in the asteroid belt , 1989 .

[18]  S. Manabe,et al.  The Influence of Continental Ice Sheets on the Climate of an Ice Age , 1985 .

[19]  On the Computation of the Effect of the Attraction of Mountain Masses as disturbing the Apparent Astronomical Latitude of Stations in Geodetic Surveys , 1855 .

[20]  NASA Space Geodesy Program: GSFC data analysis, 1993. VLBI geodetic results 1979 - 1992 , 1994 .

[21]  W. R. Peltier,et al.  The LAGEOS constraint on deep mantle viscosity: Results from a new normal mode method for the inversion of viscoelastic relaxation spectra , 1985 .

[22]  S. Marshall,et al.  Coupled energy‐balance/ice‐sheet model simulations of the glacial cycle: A possible connection between terminations and terrigenous dust , 1995 .

[23]  R. Ramseier Self-diffusion in ice monocrystals , 1967 .

[24]  G. Wakahama On the Plastic Deformation of Single Crystal of Ice , 1967 .

[25]  K. Lambeck,et al.  Material versus isobaric internal boundaries in the Earth and their influence on postglacial rebound , 1997 .

[26]  J. D. Hays,et al.  Variations in the Earth ' s Orbit : Pacemaker of the Ice Ages Author ( s ) : , 2022 .

[27]  W. Peltier Constraint on deep mantle viscosity from Lageos acceleration data , 1983, Nature.

[28]  Robert W. Clayton,et al.  Constraints on the Structure of Mantle Convection Using Seismic Observations, Flow Models, and the Geoid , 1989 .

[29]  W. R. Peltier,et al.  Validation of the ICE‐3G Model of Würm‐Wisconsin Deglaciation using a global data base of relative sea level histories , 1992 .

[30]  W. Peltier,et al.  A high-resolution model of the 100 ka ice-age cycle , 1997, Annals of Glaciology.

[31]  W. Peltier,et al.  Constraints on mantle viscosity based upon the inversion of post-glacial uplift data from the Hudson Bay region , 1995 .

[32]  W. Peltier,et al.  Viscous gravitational relaxation , 1982 .

[33]  T. F. Jamieson III.—On the Cause of the Depression and Re-elevation of the Land during the Glacial Period , 1882, Geological Magazine.

[34]  L. Morrison,et al.  Rotation of the Earth from AD 1663–1972 and the Constancy of G , 1973, Nature.

[35]  W. Peltier Mantle Viscosity and Ice-Age Ice Sheet Topography , 1996, Science.

[36]  W. Eddy,et al.  The GEM-T2 Gravitational Model , 1989 .

[37]  W. Peltier Global sea level rise and glacial isostatic adjustment , 1999 .

[38]  A. Tarantola,et al.  Generalized Nonlinear Inverse Problems Solved Using the Least Squares Criterion (Paper 1R1855) , 1982 .

[39]  C. Hillaire-Marcel Paleo-oceanographie isotopique des mers post-glaciaires du Quebec , 1981 .

[40]  H. Miller,et al.  Textures and fabrics in the GRIP ice core , 1997 .

[41]  N. Shackleton,et al.  Oxygen isotopes and sea level , 1986, Nature.

[42]  J. Mitrovica,et al.  New inferences of mantle viscosity from joint inversion of long‐wavelength mantle convection and post‐glacial rebound data , 1996 .

[43]  W. Peltier,et al.  On postglacial geoid subsidence over the equatorial oceans , 1991 .

[44]  C. E. Dutton On Some of the Greater Problems of Physical Geology , 1926, Bulletin Géodésique.

[45]  N. A. Haskell The Motion of a Viscous Fluid Under a Surface Load , 1935 .

[46]  W. Peltier,et al.  The procession constant of the Earth: Variations through the Ice‐Age , 1994 .

[47]  C. W. Ferguson,et al.  Radiocarbon Age Calibration Back to 13,300 Years BP and the 14C Age Matching of the German Oak and US Bristlecone Pine Chronologies , 1986, Radiocarbon.

[48]  S. Manabe,et al.  Coupled ocean‐atmosphere model response to freshwater input: Comparison to Younger Dryas Event , 1997 .

[49]  R. Walcott Structure of the Earth from Glacio-Isostatic Rebound , 1973 .

[50]  T. Barnett Recent changes in sea level and their possible causes , 1990 .

[51]  J. Mitrovica,et al.  Haskell [1935] revisited , 1996 .

[52]  W. Peltier,et al.  Glacial isostasy and relative sea level: A global finite element model , 1978 .

[53]  T. James,et al.  Late Quaternary variations in relative sea level due to glacial cycle polar wander , 1996 .

[54]  J. Jouzel,et al.  Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years) , 1987, Nature.

[55]  N. Shackleton Oxygen Isotope Analyses and Pleistocene Temperatures Re-assessed , 1967, Nature.

[56]  David A. Short,et al.  Simple Energy Balance Model Resolving the Seasons and the Continents' Application to the Astronomical Theory of the Ice Ages , 1983 .

[57]  A. E. Litherland Ultrasensitive Mass Spectrometry with Accelerators , 1980 .

[58]  A. Weaver,et al.  Temporal‐geographical meltwater influences on the North Atlantic conveyor: Implications for the Younger Dryas , 1997 .

[59]  D. Kohlstedt,et al.  Low-stress high-temperature creep in olivine single crystals , 1974 .

[60]  André Berger,et al.  Long-term variations of daily insolation and Quaternary climatic changes , 1978 .

[61]  Gary T. Mitchum,et al.  Improved determination of global mean sea level variations using TOPEX/POSEIDON altimeter data , 1997 .

[62]  Richard A. Muller,et al.  Glacial cycles and orbital inclination , 1995, Nature.

[63]  K. Lambeck,et al.  Glacial rebound of the British Isles—III. Constraints on mantle viscosity , 1996 .

[64]  P. Huybrechts The Antarctic ice sheet during the last glacial-interglacial cycle: a three-dimensional experiment , 1990 .

[65]  G. Wasserburg,et al.  Holocene sea-level determination relative to the Australian continent: U/Th (TIMS) and 14C (AMS) dating of coral cores from the Abrolhos Islands , 1993 .

[66]  L. Cathles,et al.  The Viscosity of the Earth's Mantle , 1975 .

[67]  J. Chappell,et al.  Post-glacial sea-level rise from a coral record at Huon Peninsula, Papua New Guinea , 1991, Nature.

[68]  L. V. Morrison,et al.  Long-term fluctuations in the Earth’s rotation: 700 BC to AD 1990 , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[69]  J. Pratt I. On the attraction of the Himalaya Mountains, and of the elevated region beyond them, upon the plumb-line in India , 1855, Proceedings of the Royal Society of London.

[70]  Richard Peltier,et al.  Dynamics of the Ice Age Earth , 1982 .

[71]  S. Dickman Continental drift and true polar wandering , 1979 .

[72]  J. Pandolfi,et al.  Reconciliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records , 1996 .

[73]  Roger J. Braithwaite Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling , 1995 .

[74]  E. Bard,et al.  Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U–Th ages from Barbados corals , 1990, Nature.

[75]  André Berger,et al.  An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677 , 1990, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[76]  W. Peltier,et al.  Ten million year histories of obliquity and precession: The influence of the ice-age cycle , 1996 .

[77]  W. Peltier VLBI baseline variations from the Ice-4G Model of postglacial rebound , 1995 .

[78]  D. Yuen,et al.  Can long‐wavelength dynamical signatures be compatible with layered mantle convection? , 1997 .

[79]  J. Mitrovica Reply to comment by L. Cathles and W. Fjeldskaar on 'The inference of mantle viscosity from an inversion of the Fennoscandian relaxation spectrum' , 1993 .

[80]  W. Peltier,et al.  Plate tectonics and aspherical earth structure: The Importance of poloidal‐toroidal coupling , 1987 .

[81]  S. Marshall,et al.  Geologic and topographic controls on fast flow in the Laurentide and Cordilleran Ice Sheets , 1996 .

[82]  G. Miller,et al.  The Last great ice sheets , 1981 .

[83]  R. Daly The changing world of the ice age , 1934 .

[84]  J. F. Nye The Motion of Ice Sheets and Glaciers , 1959 .

[85]  E. Bard,et al.  Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge , 1996, Nature.

[86]  W. Peltier,et al.  ICE-3G: A new global model of late Pleistocene deglaciation based upon geophysical predictions of po , 1991 .

[87]  R. Peltier,et al.  Viscous flow models of global geophysical observables: 1. Forward problems , 1991 .

[88]  R. Devoy Sea Surface Studies , 1987 .

[89]  V. Hsu,et al.  40Ar/39Ar Dating of the Brunhes-Matuyama Geomagnetic Field Reversal , 1992, Science.

[90]  D. Macayeal,et al.  Numerical reconstruction of a soft-bedded Laurentide Ice Sheet during the last glacial maximum , 1996 .

[91]  D. Wolf Note on estimates of the glacial-isostatic decay spectrum for Fennoscandia , 1996 .

[92]  W. Peltier,et al.  Terminating the 100 kyr ice age cycle , 1997 .

[93]  W. Peltier,et al.  The Kinematics and Dynamics of Poloidal–Toroidal Coupling in Mantle Flow: The Importance of Surface Plates and Lateral Viscosity Variations , 1994 .

[94]  W. Peltier,et al.  Global surface heat flux anomalies from seismic tomography‐based models of mantle flow: Implications for mantle convection , 1998 .

[95]  E. Bard Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: paleoceanographic implications , 1988 .

[96]  H. Heinrich,et al.  Origin and Consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean During the Past 130,000 Years , 1988, Quaternary Research.

[97]  W. Peltier,et al.  Simulations of continental ice sheet growth over the last glacial-interglacial cycle: Experiments with a one-level seasonal energy balance model including realistic geography , 1991 .

[98]  Syaefudin,et al.  Pleistocene sea levels and tectonic uplift based on dating of corals from Sumba Island, Indonesia , 1996 .

[99]  J. Beck,et al.  A Large Drop in Atmospheric 14C/12C and Reduced Melting in the Younger Dryas, Documented with 230Th Ages of Corals , 1993, Science.

[100]  W. Peltier,et al.  Pleistocene deglaciation and the Earth's rotation: a new analysis , 1984 .

[101]  C. Hillaire-Marcel La déglaciation et le relèvement isostatique sur la côte est de la baie d’Hudson , 1976 .

[102]  W. Peltier “Implicit ice” in the global theory of glacial isostatic adjustment , 1998 .

[103]  David D. Jackson,et al.  A Bayesian approach to nonlinear inversion , 1985 .

[104]  R. Gore The most ancient americans , 1997 .

[105]  B. Hager,et al.  Long-wavelength variations in Earth’s geoid: physical models and dynamical implications , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[106]  W. Peltier,et al.  Phase-transition modulated mixing in the mantle of the Earth , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[107]  J. Chappell,et al.  230Th/234U age support of an interstadial sea level of −40 m at 30,000 yr BP , 1978, Nature.

[108]  J. G. Williams,et al.  Secular variation of Earth's gravitational harmonic J2 coefficient from Lageos and nontidal acceleration of Earth rotation , 1983, Nature.

[109]  J. W. Glen,et al.  The creep of polycrystalline ice , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[110]  J. Chappell,et al.  Holocene Coral Reef Terraces and Coseismic Uplift of Huon Peninsula, Papua New Guinea , 1993, Quaternary Research.

[111]  W. Markowitz Latitude and Longitude, and the Secular Motion of the Pole , 1960 .

[112]  G. Spada,et al.  Analytical visco-elastic relaxation models , 1996 .

[113]  G. S. Miller,et al.  Development of recurrent coastal plume in Lake Michigan observed for first time , 1996 .

[114]  Guy Masters,et al.  An inversion for radial viscosity structure using seismic tomography , 1992 .

[115]  D. Thomson Quadratic-inverse spectrum estimates: applications to palaeoclimatology , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[116]  George E. Backus,et al.  Bayesian inference in geomagnetism , 1988 .

[117]  P. K. Seidelmann,et al.  1980 IAU Theory of Nutation: The final report of the IAU Working Group on Nutation , 1982 .

[118]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[119]  R. Nerem,et al.  Characterization of Global Mean Sea Level Variations Observed by TOPEX/POSEIDON Using Empirical Orthogonal Functions , 1997 .

[120]  S. Dickman Secular trend of the Earth's rotation pole: consideration of motion of the latitude observatories , 1977 .

[121]  I. Cayo Shore displacement data based on lake isolations confirm the postglacial part of the Swedish Geochronological Time Scale , 1992 .

[122]  A. Tarantola,et al.  Inverse problems = Quest for information , 1982 .

[123]  W. Peltier,et al.  MANTLE VISCOSITY, GLACIAL ISOSTATIC ADJUSTMENT AND THE EUSTATIC LEVEL OF THE SEA , 1997 .

[124]  D. Robertson,et al.  The application of geodetic radio interferometric surveying to the monitoring of sea-level , 1986 .

[125]  D. Goldsby Superplasticity in ice , 1998 .

[126]  W. Peltier,et al.  A One-Dimensional Model of Continental Ice Volume Fluctuations through the Pleistocene: Implications for the Origin of the Mid-Pleistocene Climate Transition , 1991 .

[127]  R. Devoy Introduction: First Principles and the Scope of Sea-surface Studies , 1987 .

[128]  David L. Goldsby,et al.  Grain boundary sliding in fine-grained ice I , 1997 .

[129]  W. Peltier Global sea level rise and glacial isostatic adjustment: An analysis of data from the East Coast of North America , 1996 .

[130]  W. Peltier,et al.  Simulations of continental ice sheet growth over the last glacial-interglacial cycle: experiments with a one level seasonal energy balance model including seasonal ice albedo feedback , 1992 .

[131]  P. Reimer,et al.  Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program , 1993, Radiocarbon: An International Journal of Cosmogenic Isotope Research.

[132]  Bruce C. Douglas,et al.  Global sea level rise , 1991 .

[133]  Frederik J. Hilgen,et al.  Evaluation of the Plio‐Pleistocene astronomical timescale , 1996 .

[134]  W. Peltier,et al.  Ice Age Paleotopography , 1994, Science.

[135]  Bradford H. Hager,et al.  Localization of the gravity field and the signature of glacial rebound , 1997, Nature.

[136]  A. Holmes,et al.  Principles of Physical Geology , 1965 .

[137]  W. Peltier,et al.  Late Pleistocene Ice Age Scenarios Based on Observational Evidence , 1993 .

[138]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[139]  T. F. Jamieson On the History of the Last Geological Changes in Scotland , 1865, Quarterly Journal of the Geological Society of London.

[140]  S. Elias,et al.  Paleoecology of Late-Glacial Peats from the Bering Land Bridge, Chukchi Sea Shelf Region, Northwestern Alaska , 1992, Quaternary Research.

[141]  W. R. Peltier,et al.  The inverse problem for mantle viscosity , 1998 .

[142]  R. McConnell,et al.  Viscosity of the mantle from relaxation time spectra of isostatic adjustment , 1968 .

[143]  N. Barkov,et al.  Aerosol concentrations over the last climatic cycle (160 kyr) from an Antarctic ice core , 1987, Nature.

[144]  F. Dahlen The Passive Influence of the Oceans upon the Rotation of the Earth , 1976 .

[145]  M. Meier Contribution of Small Glaciers to Global Sea Level , 1984, Science.

[146]  C. Vigny,et al.  Mantle dynamics with induced plate tectonics , 1989 .

[147]  J. Weertman,et al.  Creep laws for the mantle of the Earth , 1978, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[148]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[149]  W. Peltier,et al.  Earth's gravitational field: Seismic tomography resolves the enigma of the Laurentian Anomaly , 1992 .

[150]  The role of ocean-atmosphere reorganizations in glacial cycles , 1989 .

[151]  W. Peltier,et al.  Dansgaard–Oeschger Oscillations in a Coupled Atmosphere–Ocean Climate Model , 1997 .

[152]  W. Peltier,et al.  Global Changes in Postglacial Sea Level: A Numerical Calculation , 1978, Quaternary Research.

[153]  C. Shum,et al.  Temporal variations in low degree zonal harmonics from Starlette orbit analysis , 1989 .

[154]  W. Peltier,et al.  The heat flow constraint on mantle tomography-based convection models: Towards a geodynamically self-consistent inference of mantle viscosity , 1995 .

[155]  T. James,et al.  A comparison of VLBI data with the Ice‐3G Glacial Rebound Model , 1993 .

[156]  J. Laskar Secular evolution of the solar system over 10 million years , 1988 .

[157]  New constraints on transient lower mantle rheology and internal mantle buoyancy from glacial rebound data , 1985, Nature.

[158]  W. J. Morgan,et al.  Horizontal motions due to post‐glacial rebound , 1990 .

[159]  J. Mitrovica,et al.  Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial , 1997 .

[160]  D. Rubincam Postglacial rebound observed by lageos and the effective viscosity of the lower mantle , 1984 .

[161]  W. R. Peltier,et al.  The thickness of the continental lithosphere , 1984 .

[162]  N. Shackleton Oxygen isotopes, ice volume and sea level , 1987 .

[163]  W. Peltier The impulse response of a Maxwell Earth , 1974 .

[164]  E. Proverbio,et al.  Secular variations in latitudes and longitudes and continental drift , 1974 .

[165]  I. Shapiro,et al.  A spectral formalism for computing three‐dimensional deformations due to surface loads: 2. Present‐day glacial isostatic adjustment , 1994 .

[166]  R. Edwards High Precision Thorium-230 Ages of Corals and the Timing of Sea Level Fluctuations in the Late Quaternary , 1988 .

[167]  A space geodetic target for mantle viscosity discrimination: Horizontal motions induced by glacial isostatic adjustment , 1998 .

[168]  M. Fang,et al.  The singularity mystery associated with a radially continuous Maxwell viscoelastic structure , 1995 .

[169]  W. Peltier,et al.  A multibasin reduced model of the global thermohaline circulation: Paleoceanographic analyses of the origins of ice‐age climate variability , 1996 .

[170]  R. Fairbanks A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation , 1989, Nature.

[171]  B. Hager Subducted slabs and the geoid: Constraints on mantle rheology and flow , 1983 .

[172]  J. Kutzbach,et al.  The Influence of Changing Orbital Parameters and Surface Boundary Conditions on Climate Simulations for the Past 18 000 Years , 1986 .

[173]  W. Peltier,et al.  Inferences of mantle viscosity from tectonic plate velocities , 1991 .

[174]  W. Peltier,et al.  Dynamic surface topography: A new interpretation based upon mantle flow models derived from seismic tomography , 1993 .

[175]  Suzanne Hurter,et al.  Heat flow from the Earth's interior: Analysis of the global data set , 1993 .

[176]  P. Huybrechts,et al.  The EISMINT benchmarks for testing ice-sheet models , 1996, Annals of Glaciology.

[177]  R. Edwards Paleotopography of Glacial-Age Ice Sheets , 1995, Science.

[178]  W. Peltier Deglaciation‐induced vertical motion of the North American continent and transient lower mantle rheology , 1986 .

[179]  W. Peltier Global Sea Level and Earth Rotation , 1988, Science.

[180]  W. Peltier,et al.  The free‐air gravity constraint on subcontinental mantle dynamics , 1996 .

[181]  R. Parker The Inverse Problem of Electrical Conductivity in the Mantle , 1971 .

[182]  Conyers Herring,et al.  Diffusional Viscosity of a Polycrystalline Solid , 1950 .

[183]  K. Lambeck,et al.  Holocene glacial rebound and sea-level change in NW Europe , 1990 .