Inductance of mixed carbon nanotube bundles

The carbon nanotube (CNT) bundle is a promising candidate for next-generation interconnect/via applications. A realistic CNT bundle is a mixture of single-wall and multi-wall CNTs and its performance analysis needs to consider both kinds of CNTs. The inductances of the mixed CNT bundles are estimated, which are in agreement with the recent experimental results. Impacts of different parameters such as tube density, tube distribution, metallic tube ratio and bundle dimensions are discussed, providing an important guideline to design and fabricate a CNT bundle with a desirable inductance performance.

[1]  Y. Nakajima,et al.  Proposal of Carbon Nanotube Inductors , 2006 .

[2]  D. Glattli,et al.  Determination of the intershell conductance in multiwalled carbon nanotubes. , 2004, Physical review letters.

[3]  P. Burke,et al.  Microwave transport in metallic single-walled carbon nanotubes. , 2005, Nano letters.

[4]  P. J. Burke An RF circuit model for carbon nanotubes , 2003 .

[5]  M. Meyyappan,et al.  Bottom-up approach for carbon nanotube interconnects , 2003 .

[6]  S. Datta,et al.  Transport effects on signal propagation in quantum wires , 2005, IEEE Transactions on Electron Devices.

[7]  Y. Massoud,et al.  Understanding the Impact of Inductance in Carbon Nanotube Bundles for VLSI Interconnect Using Scalable Modeling Techniques , 2006, IEEE Transactions on Nanotechnology.

[8]  H J Li,et al.  Multichannel ballistic transport in multiwall carbon nanotubes. , 2005, Physical review letters.

[9]  G. Miano,et al.  An Integral Formulation for the Electrodynamics of Metallic Carbon Nanotubes Based on a Fluid Model , 2006, IEEE Transactions on Antennas and Propagation.

[10]  J. Meindl,et al.  Compact physical models for multiwall carbon-nanotube interconnects , 2006, IEEE Electron Device Letters.

[11]  M. Zhang,et al.  Radio-frequency transmission properties of carbon nanotubes in a field-effect transistor configuration , 2006, IEEE Electron Device Letters.

[12]  Ching-Ping Wong,et al.  Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays , 2006 .

[13]  L. Roschier,et al.  Multiwalled carbon nanotube: Luttinger versus fermi liquid , 2001 .

[14]  John J. Plombon,et al.  High-frequency electrical properties of individual and bundled carbon nanotubes , 2007 .

[15]  J. Meindl,et al.  Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI) , 2005, IEEE Electron Device Letters.

[16]  Kaushik Roy,et al.  Modeling of metallic carbon-nanotube interconnects for circuit simulations and a comparison with Cu interconnects for scaled technologies , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[17]  P. McEuen,et al.  Single-walled carbon nanotube electronics , 2002 .

[18]  A. Kawabata,et al.  Novel approach to fabricating carbon nanotube via interconnects using size-controlled catalyst nanoparticles , 2006, 2006 International Interconnect Technology Conference.

[19]  E. Brown,et al.  Ballistic thermal and electrical conductance measurements on individual multiwall carbon nanotubes , 2005 .

[20]  Charles M. Lieber,et al.  Diameter-Controlled Synthesis of Carbon Nanotubes , 2002 .

[21]  Martel,et al.  Intertube coupling in ropes of single-wall carbon nanotubes , 2000, Physical review letters.