A q-analogue of Wilson's congruence
暂无分享,去创建一个
Hao Pan | Yu-Chen Sun | H. Pan | Yu-Chen Sun
[1] Gian-Carlo Rota,et al. Congruences Derived from Group Action , 1980, Eur. J. Comb..
[3] Bruce E. Sagan,et al. Congruence properties of q-analogs , 1992 .
[4] Hao Pan. Congruences for q-Lucas Numbers , 2013, Electron. J. Comb..
[5] Matjaz Konvalinka. Divisibility of generalized Catalan numbers , 2007, J. Comb. Theory, Ser. A.
[6] Dongsu Kim,et al. A combinatorial approach to the power of 2 in the number of involutions , 2009, J. Comb. Theory, Ser. A.
[7] R. Chapman,et al. q-Analogue of Wilson's theorem , 2006, math/0606152.
[8] Bruce E. Sagan,et al. What power of two divides a weighted Catalan number? , 2007, J. Comb. Theory, Ser. A.
[9] Bruce E. Sagan,et al. Congruences for Catalan and Motzkin numbers and related sequences , 2004 .
[10] B. Sagan. Congruences via abelian groups , 1985 .