Efficient IRIS Recognition through Improvement of Feature Extraction and subset Selection

The selection of the optimal feature subset and the classification has become an important issue in the field of iris recognition. In this paper we propose several methods for iris feature subset selection and vector creation. The deterministic feature sequence is extracted from the iris image by using the contourlet transform technique. Contourlet transform captures the intrinsic geometrical structures of iris image. It decomposes the iris image into a set of directional sub-bands with texture details captured in different orientations at various scales so for reducing the feature vector dimensions we use the method for extract only significant bit and information from normalized iris images. In this method we ignore fragile bits. And finally we use SVM (Support Vector Machine) classifier for approximating the amount of people identification in our proposed system. Experimental result show that most proposed method reduces processing time and increase the classification accuracy and also the iris feature vector length is much smaller versus the other methods.

[1]  Tieniu Tan,et al.  Cascading statistical and structural classifiers for iris recognition , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[2]  T. Tan,et al.  Iris Recognition Based on Multichannel Gabor Filtering , 2002 .

[3]  Richard P. Wildes,et al.  A machine-vision system for iris recognition , 2005, Machine Vision and Applications.

[4]  Ashok A. Ghatol,et al.  Iris recognition: an emerging biometric technology , 2007 .

[5]  Jafar M. H. Ali,et al.  An Iris Recognition System to Enhance E-security Environment Based on Wavelet Theory , 2003 .

[6]  Libor Masek,et al.  Recognition of Human Iris Patterns for Biometric Identification , 2003 .

[7]  Jaihie Kim,et al.  Iris Feature Extraction Using Independent Component Analysis , 2003, AVBPA.

[8]  Yillbyung Lee,et al.  Discriminant iris feature and support vector machines for iris recognition , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[9]  Kang Ryoung Park,et al.  Iris Recognition in Mobile Phone Based on Adaptive Gabor Filter , 2006, ICB.

[10]  David Chandler,et al.  Biometric Product Testing Final Report , 2001 .

[11]  Natalia A. Schmid,et al.  Performance analysis of iris-based identification system at the matching score level , 2005, IEEE Transactions on Information Forensics and Security.

[12]  Tieniu Tan,et al.  Global Texture Analysis of Iris Images for Ethnic Classification , 2006, ICB.

[13]  Dexin Zhang,et al.  Personal Identification Based on Iris Texture Analysis , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  John Daugman How iris recognition works , 2004 .

[15]  K.W. Bowyer,et al.  The Best Bits in an Iris Code , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[17]  B. V. K. Vijaya Kumar,et al.  Iris Verification Using Correlation Filters , 2003, AVBPA.

[18]  Tieniu Tan,et al.  Iris recognition using circular symmetric filters , 2002, Object recognition supported by user interaction for service robots.

[19]  Wageeh Boles,et al.  Recognition of 2D object contours using the wavelet transform zero-crossing representation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Boualem Boashash,et al.  A human identification technique using images of the iris and wavelet transform , 1998, IEEE Trans. Signal Process..

[21]  Carmen Sánchez Ávila,et al.  Iris Recognition with Low Template Size , 2001, AVBPA.

[22]  John Daugman,et al.  Statistical Richness of Visual Phase Information: Update on Recognizing Persons by Iris Patterns , 2001, International Journal of Computer Vision.

[23]  Okhwan Byeon,et al.  Efficient Iris Recognition through Improvement of Feature Vector and Classifier , 2001 .

[24]  Alan C. Bovik,et al.  The multicomponent AM-FM image representation , 1996, IEEE Trans. Image Process..

[25]  Patrick J. Flynn,et al.  Experimental Evaluation of Iris Recognition , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[26]  Andrew Beng Jin Teoh,et al.  Iris Authentication Using Privatized Advanced Correlation Filter , 2006, ICB.

[27]  Lionel Torres,et al.  Person Identification Technique Using Human Iris Recognition , 2002 .

[28]  Mark J. T. Smith,et al.  A filter bank for the directional decomposition of images: theory and design , 1992, IEEE Trans. Signal Process..

[29]  Kang Ryoung Park,et al.  Fake Iris Detection by Using Purkinje Image , 2006, ICB.

[30]  Joseph P. Havlicek,et al.  AM-FM image segmentation , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[31]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[32]  Darko Kirovski,et al.  EyeCerts , 2006, IEEE Transactions on Information Forensics and Security.

[33]  Hiroshi Nakajima,et al.  A Phase-Based Iris Recognition Algorithm , 2006, ICB.

[34]  Sanghamitra Bandyopadhyay,et al.  Multiobjective GAs, quantitative indices, and pattern classification , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[35]  Dexin Zhang,et al.  Personal Identification Based on , 2003 .

[36]  Tieniu Tan,et al.  Improving iris recognition accuracy via cascaded classifiers , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[37]  Tieniu Tan,et al.  Graph Matching Iris Image Blocks with Local Binary Pattern , 2006, ICB.

[38]  John Daugman,et al.  Demodulation by Complex-Valued Wavelets for Stochastic Pattern Recognition , 2003, Int. J. Wavelets Multiresolution Inf. Process..

[39]  Patrick J. Flynn,et al.  Experiments with an improved iris segmentation algorithm , 2005, Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID'05).

[40]  Carmen Sanchez-Avila,et al.  Iris-based biometric recognition using dyadic wavelet transform , 2002 .

[41]  Minh N. Do,et al.  Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .

[42]  Pengfei Shi,et al.  An Efficient Iris Segmentation Method for Recognition , 2005, ICAPR.

[43]  D. Chakrabarti,et al.  A fast fixed - point algorithm for independent component analysis , 1997 .

[44]  Dexin Zhang,et al.  Efficient iris recognition by characterizing key local variations , 2004, IEEE Transactions on Image Processing.

[45]  Jing Xiao,et al.  Meticulously detailed eye region model and its application to analysis of facial images , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Babak Nadjar Araabi,et al.  Iris Recognition for Partially Occluded Images: Methodology and Sensitivity Analysis , 2007, EURASIP J. Adv. Signal Process..

[47]  John Daugman,et al.  High Confidence Visual Recognition of Persons by a Test of Statistical Independence , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  Hamid Reza Pourreza,et al.  A New Method for Iris Recognition Based on Contourlet Transform and Non Linear Approximation Coefficients , 2009, ICIC.

[49]  Tieniu Tan,et al.  Biometric personal identification based on iris patterns , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[50]  Mark J. T. Smith,et al.  Iris-Based Personal Authentication Using a Normalized Directional Energy Feature , 2003, AVBPA.

[51]  M.B. Pereira,et al.  Application of Genetic Algorithms to Improve the Reliability of an Iris Recognition System , 2005, 2005 IEEE Workshop on Machine Learning for Signal Processing.

[52]  Huachun Tan,et al.  Detecting eye blink states by tracking iris and eyelids , 2006, Pattern Recognit. Lett..