Geographical embedding of scale-free networks

A method for embedding graphs in Euclidean space is suggested. The method connects nodes to their geographically closest neighbors and economizes on the total physical length of links. The topological and geometrical properties of scale-free networks embedded by the suggested algorithm are studied both analytically and through simulations. Our findings indicate dramatic changes in the embedded networks, in comparison to their off-lattice counterparts, and call into question the applicability of off-lattice scale-free models to realistic, everyday-life networks.

[1]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[2]  W. Coffey,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2002 .

[3]  S. N. Dorogovtsev,et al.  Size-dependent degree distribution of a scale-free growing network. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Reuven Cohen,et al.  Scale-free networks on lattices. , 2002, Physical review letters.

[5]  S. Havlin,et al.  Scale-free networks are ultrasmall. , 2002, Physical review letters.

[6]  Carson C. Chow,et al.  Small Worlds , 2000 .

[7]  S. Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems , 2000 .

[8]  Andrei Z. Broder,et al.  Graph structure in the Web , 2000, Comput. Networks.

[9]  P. Erdos,et al.  On the strength of connectedness of a random graph , 1964 .

[10]  Hawoong Jeong,et al.  Modeling the Internet's large-scale topology , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[12]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[13]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[14]  Magyar Tudományos Akadémia. Nyelvtudományi Intézet,et al.  A Magyar Tudományos Akadémia Matematikai Kutató Intézetének közleményei = Труды Математического института Академии наук Венгрии = Publications of the Mathematical Institute of the Hungarian Academy of Sciences , 1956 .

[15]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[16]  L. Sander,et al.  Geography in a scale-free network model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  L. Schulman,et al.  Luminescence Quenching of Ruthenium(II)-Tris(phenanthroline) by Cobalt(III)-Tris(phenanthroline) Bound to the Surface of Starburst Dendrimers , 1998 .

[18]  Gesine Reinert,et al.  Small worlds , 2001, Random Struct. Algorithms.

[19]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[20]  S. Redner,et al.  Introduction To Percolation Theory , 2018 .

[21]  Shlomo Havlin,et al.  Diffusion and Reactions in Fractals and Disordered Systems: Random walks and diffusion , 2000 .

[22]  Michalis Faloutsos,et al.  On power-law relationships of the Internet topology , 1999, SIGCOMM '99.

[23]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[24]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[25]  Béla Bollobás,et al.  Random Graphs , 1985 .

[26]  S. Havlin,et al.  Fractals and Disordered Systems , 1991 .