Modeling and Simulation of Cross-Flow Induced Vibration in a Multi-Span Tube Bundle

Flow-induced vibration in steam generator and heat exchanger tube bundles has been a source of major concern in nuclear and process industry. Tubes in a bundle are the most flexible components of the assembly. Flow induced vibration mechanisms, like fluid-elastic instability, vortex shedding, turbulence induced excitation and acoustic resonance results in failure due to mechanical wear, fretting and fatigue cracking. The general trend in heat exchanger design is towards larger exchangers with increased shell side velocities. Costly plant shutdowns have been the motivation for research in the area of cross-flow induced vibration in steam generators and process exchangers. The current paper focuses on the development of a computer code (FIVPAK) for the design (natural frequencies, variable geometry, tube pitch & pattern, mass damping parameter, reduced velocity, strouhal and damage numbers, added mass, wear work rates, void fraction for two-phase, turbulence and acoustic considerations etc.) of tube bundles with respect to cross flow-induced vibration. The code has been validated against Tubular Exchanger Manufacturers (TEMA), Flow-Induced Vibration code (FIV), and results on an actual variable geometry exchanger, specially manufactured to simulate real systems. The proposed code is expected to prove a useful tool in designing a tube bundle and to evaluate the performance of an existing system.© 2004 ASME