Time Frequency Characterization of Evoked Brain Activity In Multiple Electrode Recordings

This paper explores global time frequency approaches to EEG data analysis with the Wigner Distribution Function and the Symmetric Ambiguity Function. The task chosen was to characterize the activity profile of EEG signals in sample Frontal, Central and Occipital electrodes from human subjects, coincident with the perception of a reversal in the orientation of a bistable Necker cube figure. The result of this analysis has implications for blind signal processing as the goal was to identify an unknown input source eliciting the observed EEG signals. The methods demonstrate an internally initiated EEG signal source not tied to a regularly anticipated external source. The results demonstrate the general applicability of the methods for a wide variety of neural and biological signals and systems. The findings can be summarized as the observation of high energy activity patterns in terms of significant dissimilarities in the waveform, both in time and frequency, in the Frontal and Occipital electrodes, approximately 200-600 ms prior to the appearance of the premotor potentials in the medial electrodes

[1]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .

[2]  Daniel Strüber,et al.  Slow Positive Potentials in the EEG During Multistable Visual Perception , 1995 .

[3]  D. Tucker,et al.  Scalp electrode impedance, infection risk, and EEG data quality , 2001, Clinical Neurophysiology.

[4]  Ira Lable Conscious and Unconscious Processes: Psychodynamic, Cognitive, and Neurophysiological Convergences , 2000 .

[5]  A. Wolters,et al.  Dynamics in Psychology , 1943, Nature.

[6]  T. Sejnowski,et al.  Analysis and visualization of single‐trial event‐related potentials , 2001, Human brain mapping.

[7]  William J. Williams,et al.  Decomposing ERP time–frequency energy using PCA , 2005, Clinical Neurophysiology.

[8]  William J. Williams,et al.  Improved time-frequency representation of multicomponent signals using exponential kernels , 1989, IEEE Trans. Acoust. Speech Signal Process..

[9]  D. Strüber,et al.  Reversal-rate dependent differences in the EEG gamma-band during multistable visual perception. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[10]  Erkki Oja,et al.  Independent Component Analysis , 2001 .

[11]  Daniel Strüber,et al.  Psychological Modification and Synergetic Modelling of Perceptual Oscillations , 1991 .

[12]  W. J. Williams,et al.  Conscious and Unconscious Processes: Psychodynamic, Cognitive, and Neurophysiological Convergences , 1996 .

[13]  F. Attneave Multistability in perception. , 1971, Scientific American.

[14]  M. Scheuer,et al.  Continuous EEG Monitoring in the Intensive Care Unit , 2002, Epilepsia.

[15]  A. Borsellino,et al.  Reversal time distribution in the perception of visual ambiguous stimuli , 1972, Kybernetik.

[16]  A. W. Rihaczek,et al.  Radar resolution and complex-image analysis , 1996 .

[17]  A. Hartman,et al.  Atlas of EEG Patterns , 2005, Neurology.

[18]  G. Rees,et al.  Neural correlates of perceptual rivalry in the human brain. , 1998, Science.

[19]  Joseph S. King,et al.  Some methods for dynamic analysis of the scalp recorded EEG , 2005, Brain Topography.

[20]  Martin J. McKeown,et al.  Removing electroencephalographic artifacts: comparison between ICA and PCA , 1998, Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No.98TH8378).

[21]  Ahmet Ademoglu,et al.  Analysis of the electroencephalographic activity during the Necker cube reversals by means of the wavelet transform , 1998, Biological Cybernetics.

[22]  T Elbert,et al.  The perception of Necker cube reversal interacts with the Bereitschaftspotential. , 1985, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[23]  Harald Atmanspacher,et al.  Correlates of Perceptive Instabilities in Event-Related Potentials , 2004, Int. J. Bifurc. Chaos.

[24]  Antonia Papandreou-Suppappola,et al.  Applications in Time-Frequency Signal Processing , 2002 .

[25]  T. Sejnowski,et al.  Removing electroencephalographic artifacts by blind source separation. , 2000, Psychophysiology.

[26]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[27]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[28]  G. Mathern,et al.  Epilepsia , 1991, NEURO FUNDAMENTAL.

[29]  L. Cohen,et al.  Time-frequency distributions-a review , 1989, Proc. IEEE.

[30]  R. Barry,et al.  Removal of ocular artifact from the EEG: a review , 2000, Neurophysiologie Clinique/Clinical Neurophysiology.

[31]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[32]  Marissa Westerfield,et al.  INDEPENDENT COMPONENT ANALYSIS OF SINGLE-TRIAL EVENT-RELATED POTENTIALS , 1999 .

[33]  D. Tucker Spatial sampling of head electrical fields: the geodesic sensor net. , 1993, Electroencephalography and clinical neurophysiology.

[34]  Ahmet Ademoglu,et al.  Alpha activity decreases during the perception of Necker cube reversals: an application of wavelet transform , 2000, Biological Cybernetics.

[35]  T. Claasen,et al.  THE WIGNER DISTRIBUTION - A TOOL FOR TIME-FREQUENCY SIGNAL ANALYSIS , 1980 .

[36]  D. Kammler A First Course in Fourier Analysis , 2000 .

[37]  Lucas C. Parra,et al.  1 Separation of non-stationary natural signals , 2001 .

[38]  Thomas C. Toppino,et al.  Multiple Representations of the Same Reversible Figure: Implications for Cognitive Decisional Interpretations , 1981, Perception.