In Vivo Biocompatibility of Non-derivatized Cellulose Regenerated Using Ionic Liquids

[1]  S. Mitragotri,et al.  Recent Advances in Ionic Liquids in Biomedicine , 2021, Advanced science.

[2]  Chul-Woong Cho,et al.  Review of the toxic effects of ionic liquids. , 2021, The Science of the total environment.

[3]  Marc Kostag,et al.  Sustainable biomaterials based on cellulose, chitin and chitosan composites - A review , 2021 .

[4]  J. Ratnayake,et al.  Calcium-based ceramic biomaterials , 2021 .

[5]  M. Moniruzzaman,et al.  Biocompatible ionic liquids and their applications in pharmaceutics , 2020 .

[6]  J. Flieger,et al.  Ionic Liquids Toxicity—Benefits and Threats , 2020, International journal of molecular sciences.

[7]  S. Moratti,et al.  Effect of chitosan infiltration on hydroxyapatite scaffolds derived from New Zealand bovine cancellous bones for bone regeneration. , 2020, International journal of biological macromolecules.

[8]  Balaji Murugesan,et al.  Fabrication of heteroatom doped NFP-MWCNT and NFB-MWCNT nanocomposite from imidazolium ionic liquid functionalized MWCNT for antibiofilm and wound healing in Wistar rats: Synthesis, characterization, in-vitro and in-vivo studies. , 2020, Materials science & engineering. C, Materials for biological applications.

[9]  Naseem Abbas,et al.  Ultra-High-Molecular-Weight-Polyethylene (UHMWPE) as a Promising Polymer Material for Biomedical Applications: A Concise Review , 2020, Polymers.

[10]  Sandip K. Singh,et al.  Ionic liquids synthesis and applications: An overview , 2020 .

[11]  R. Reis,et al.  Biocompatible ionic liquids: fundamental behaviours and applications. , 2019, Chemical Society reviews.

[12]  S. Moratti,et al.  Hydroxyapatite-polymer biocomposites for bone regeneration: A review of current trends. , 2018, Journal of biomedical materials research. Part B, Applied biomaterials.

[13]  A. Shavandi,et al.  Development and characterization of a xenograft material from New Zealand sourced bovine cancellous bone. , 2017, Journal of biomedical materials research. Part B, Applied biomaterials.

[14]  Yan Huang,et al.  Modification and evaluation of micro-nano structured porous bacterial cellulose scaffold for bone tissue engineering. , 2017, Materials science & engineering. C, Materials for biological applications.

[15]  B. Duchemin,et al.  Solvent infusion processing of all-cellulose composite laminates using an aqueous NaOH/urea solvent system , 2016 .

[16]  L. Ambrosio,et al.  Cellulose-based porous scaffold for bone tissue engineering applications: Assessment of hMSC proliferation and differentiation. , 2016, Journal of biomedical materials research. Part A.

[17]  S. Kang,et al.  Characterization of hydroxyapatite-coated bacterial cellulose scaffold for bone tissue engineering , 2015, Biotechnology and Bioprocess Engineering.

[18]  G. Bandara,et al.  Growth of human mast cells from bone marrow and peripheral blood-derived CD34(+) pluripotent hematopoietic cells. , 2015, Methods in molecular biology.

[19]  M. Heinemann,et al.  Detection of contaminants in cell cultures, sera and trypsin. , 2013, Biologicals : journal of the International Association of Biological Standardization.

[20]  S. Stolte,et al.  (Eco)toxicity and biodegradability of selected protic and aprotic ionic liquids. , 2013, Journal of hazardous materials.

[21]  C. Laurencin,et al.  Cellulose and collagen derived micro-nano structured scaffolds for bone tissue engineering. , 2013, Journal of biomedical nanotechnology.

[22]  R. Yunis,et al.  A facile route to functionalised, protic and chiral ionic liquids based on the triaminocyclopropenium cation , 2012 .

[23]  S. Pang,et al.  Solvent infusion processing of all-cellulose composite materials. , 2012, Carbohydrate polymers.

[24]  Suresh,et al.  Recent advances in ionic liquids: green unconventional solvents of this century: part I , 2011 .

[25]  H. Jenkins Ionic liquids–an Overview , 2011, Science progress.

[26]  J. Keasling,et al.  Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production , 2011 .

[27]  S. Ha,et al.  Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. , 2011, Bioresource technology.

[28]  A. Hajipour,et al.  Basic ionic liquids. A short review , 2009 .

[29]  Shusheng Pang,et al.  Ionic liquids and their interaction with cellulose. , 2009, Chemical reviews.

[30]  J. Prausnitz,et al.  In vitro cytotoxicities of ionic liquids: Effect of cation rings, functional groups, and anions , 2009, Environmental toxicology.

[31]  Maykel Pérez González,et al.  Cytotoxicity of selected imidazolium-derived ionic liquids in the human Caco-2 cell line. Sub-structural toxicological interpretation through a QSAR study , 2008 .

[32]  Christoph Michels,et al.  Dissolution and forming of cellulose with ionic liquids , 2008 .

[33]  Zhaofu Fei,et al.  Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa , 2007 .

[34]  C. Afonso,et al.  Toxicological Evaluation of Ionic Liquids: Effect of Ionic Liquids on Human Colon Carcinoma HT-29 and CaCo-2 Cell Lines , 2010 .

[35]  S. Stolte,et al.  Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity. , 2007, Ecotoxicology and environmental safety.

[36]  H. Hopps,et al.  Detection of bovine viruses in fetal bovine serum used in cell culture , 1975, In Vitro.

[37]  G. Voth,et al.  IONIC LIQUIDS , 2004 .

[38]  Yoshito Ikada,et al.  Challenges in tissue engineering , 2006, Journal of The Royal Society Interface.

[39]  A. Wells,et al.  On the Freshwater Ecotoxicity and Biodegradation Properties of Some Common Ionic Liquids , 2006 .

[40]  Ziniu Yu,et al.  Dissolution of cellulose with ionic liquids and its application : a mini-review , 2006 .

[41]  S. B. Halligudi,et al.  Mannich reaction in Brönsted acidic ionic liquid: A facile synthesis of β-amino carbonyl compounds , 2006 .

[42]  Lina Zhang,et al.  Unique gelation behavior of cellulose in NaOH/urea aqueous solution. , 2006, Biomacromolecules.

[43]  Jozef Keckes,et al.  All-cellulose nanocomposite , 2005 .

[44]  Charles F. Kulpa,et al.  Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids , 2005 .

[45]  M. Watanabe,et al.  Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. , 2005, The journal of physical chemistry. B.

[46]  N. Blumenkrantz,et al.  A selective stain for mast cells , 1975, The Histochemical Journal.

[47]  P. Stepnowski,et al.  Evaluating the cytotoxicity of ionic liquids using human cell line HeLa , 2004, Human & experimental toxicology.

[48]  L. Rodella,et al.  Mast cells and the inflammatory response to different implanted biomaterials. , 2004, Archives of histology and cytology.

[49]  B. Ondruschka,et al.  Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. , 2004, Ecotoxicology and environmental safety.

[50]  K. Marsh,et al.  Room temperature ionic liquids and their mixtures—a review , 2004 .

[51]  R. P. Swatloski,et al.  Using Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic liquids. , 2004, Chemical communications.

[52]  P. Peplow,et al.  Osseous regeneration in the presence of oxidized cellulose and collagen , 2003, Journal of materials science. Materials in medicine.

[53]  R. Bareille,et al.  Cellulose phosphates as biomaterials. In vivo biocompatibility studies. , 2002, Biomaterials.

[54]  J. Hermens,et al.  Internal Effect Concentration: Link Between Bioaccumulation and Ecotoxicity for Organic Chemicals , 2000 .

[55]  P Laippala,et al.  Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. , 1999, Biomaterials.

[56]  J. Hedreen,et al.  Unbiased stereology? , 1999, Trends in Neurosciences.

[57]  Konrad Sandau,et al.  Unbiased Stereology. Three‐Dimensional Measurement in Microscopy. , 1999 .

[58]  P. Revell,et al.  Direct activation of mast cells by prosthetic biomaterial particles , 1998, Journal of materials science. Materials in medicine.

[59]  J W Eaton,et al.  Mast cells mediate acute inflammatory responses to implanted biomaterials. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[60]  M. Bhat,et al.  Cellulose degrading enzymes and their potential industrial applications. , 1997, Biotechnology advances.

[61]  Saad A. Khan,et al.  Rheology and gelation of cellulose/ammonia/ammonium thiocyanate solutions , 1996 .

[62]  H R Allcock,et al.  A highly porous 3-dimensional polyphosphazene polymer matrix for skeletal tissue regeneration. , 1996, Journal of biomedical materials research.

[63]  P. Aebischer,et al.  Mast cells and tissue reaction to intraperitoneally implanted polymer capsules. , 1991, Journal of biomedical materials research.

[64]  E R Weibel,et al.  Recent stereological methods for cell biology: a brief survey. , 1990, The American journal of physiology.

[65]  L. Spångberg,et al.  Morphological cell changes due to chemical toxicity of a dental material: an electron microscopic study on human periodontal ligament fibroblasts and L929 cells. , 1990, Journal of endodontics.

[66]  P Béguin,et al.  Molecular biology of cellulose degradation. , 1990, Annual review of microbiology.

[67]  H. J. G. Gundersen,et al.  The new stereological tools: Disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis , 1988, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[68]  D. C. Sterio The unbiased estimation of number and sizes of arbitrary particles using the disector , 1984, Journal of microscopy.

[69]  A. Reith,et al.  Comparison of semiautomatic digitizer-tablet and simple point counting performance in morphometry , 1981, Virchows Archiv. B, Cell pathology including molecular pathology.

[70]  H. Petit,et al.  [A case of Creutzfeldt-Jakob disease]. , 1971, Lille medical : journal de la Faculte de medecine et de pharmacie de l'Universite de Lille.

[71]  J. Ahonen Nucleic acids in experimental granuloma. , 1968, Acta physiologica Scandinavica. Supplementum.

[72]  E. Hurwitt,et al.  Laboratory and clinical evaluation of a new absorbable hemostatic material prepared from oxidized regenerated cellulose. , 1960, Surgical forum.