Will a Large Economy Be Stable ?

We study networks of firms with Constant Elasticity of Substitution (CES) production functions. Relying on results from Random Matrix Theory, we argue that such networks generically become unstable when their size increases, when the heterogeneity in productivities/connectivities becomes too strong or when substitutability is reduced. At marginal stability and for large heterogeneities, we find that the distribution of firm sizes develops a power-law tail, as observed empirically. Crises can be triggered by small idiosyncratic shocks, which lead to "avalanches" of defaults characterized by a power-law distribution of total output losses. We conjecture that evolutionary and behavioural forces conspire to keep the economy close to marginal stability. This scenario would naturally explain the well-known "small shocks, large business cycles" puzzle, as anticipated long ago by Bak, Chen, Scheinkman and Woodford.

[1]  Guy Bunin,et al.  Interaction patterns and diversity in assembled ecological communities , 2016, 1607.04734.

[2]  G. Bunin Ecological communities with Lotka-Volterra dynamics. , 2017, Physical review. E.

[3]  C. Syverson What Determines Productivity? , 2010 .

[4]  David M. Raup,et al.  How Nature Works: The Science of Self-Organized Criticality , 1997 .

[5]  Claudio Castellano,et al.  Relating topological determinants of complex networks to their spectral properties: structural and dynamical effects , 2017, 1703.10438.

[6]  J. Sethna Statistical Mechanics: Entropy, Order Parameters, and Complexity , 2021 .

[7]  A. Barabasi,et al.  Spectra of "real-world" graphs: beyond the semicircle law. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  M. Marsili,et al.  TYPICAL PROPERTIES OF LARGE RANDOM ECONOMIES WITH LINEAR ACTIVITIES , 2003, Macroeconomic Dynamics.

[9]  Bill Dupor Aggregation and irrelevance in multi-sector models , 1999 .

[10]  Florent Benaych-Georges,et al.  Largest eigenvalues and eigenvectors of band or sparse random matrices , 2014 .

[11]  I. Lifshitz,et al.  The energy spectrum of disordered systems , 1964 .

[12]  Charles I. Plosser,et al.  Real Business Cycles , 1983, Journal of Political Economy.

[13]  J. Bouchaud,et al.  Statistical Models for Company Growth , 2002, cond-mat/0210479.

[14]  Ben S. Bernanke,et al.  The Financial Accelerator and the Flight to Quality , 1994 .

[15]  R. E. LucasJr Understanding Business Cycles , 1995 .

[16]  J. Scheinkman,et al.  Self-Organization of Inflation Volatility , 2019, SSRN Electronic Journal.

[17]  Roger E. A. Farmer,et al.  The Macroeconomics of Self-Fulfilling Prophecies , 1993 .

[18]  Herbert A. Simon,et al.  Note: Some Conditions of Macroeconomic Stability , 1949 .

[19]  X. Gabaix The Granular Origins of Aggregate Fluctuations , 2009 .

[20]  The Network Origins of Aggregate Fluctuations , 2011 .

[21]  M. Muller,et al.  Avalanches in mean-field models and the Barkhausen noise in spin-glasses , 2010, 1007.2069.

[22]  R. May,et al.  Systemic risk in banking ecosystems , 2011, Nature.

[23]  J. Scheinkman,et al.  Self-Organized Criticality and Economic Fluctuations , 1994 .

[24]  Daron Acemoglu,et al.  Networks and the Macroeconomy: An Empirical Exploration , 2015 .

[25]  David Hawkins,et al.  Some Conditions of Macroeconomic Stability , 1948 .

[26]  C. Bordenave,et al.  The circular law , 2012 .

[27]  J. Scheinkman,et al.  Aggregate Fluctuations from Independent Sectoral Shocks: Self-Organized Criticality in a Model of Production and Inventory Dynamics , 1992 .

[28]  Per Bak,et al.  How Nature Works: The Science of Self‐Organized Criticality , 1997 .

[29]  R. Kuehn Spectra of sparse random matrices , 2008, 0803.2886.

[30]  Matteo Marsili,et al.  Epidemics of rules, rational negligence and market crashes , 2013, New Facets of Economic Complexity in Modern Financial Markets.

[31]  Izaak Neri,et al.  Eigenvalue Outliers of Non-Hermitian Random Matrices with a Local Tree Structure. , 2016, Physical review letters.

[32]  James Roberts,et al.  Network structure of production , 2011, Proceedings of the National Academy of Sciences.

[33]  Teruyoshi Kobayashi,et al.  Network Models of Financial Systemic Risk: A Review , 2017 .

[34]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[35]  Andrew T. Foerster,et al.  Sectoral vs. Aggregate Shocks: A Structural Factor Analysis of Industrial Production , 2008 .

[36]  Prasanna Gai,et al.  Contagion in Financial Networks , 2010 .

[37]  Giorgio Parisi,et al.  Fractal free energy landscapes in structural glasses , 2014, Nature Communications.

[38]  Jean-Philippe Bouchaud,et al.  Sudden trust collapse in networked societies , 2014, The European Physical Journal B.

[39]  M. Fiedler,et al.  On matrices with non-positive off-diagonal elements and positive principal minors , 1962 .

[40]  T. Rogers,et al.  Cavity approach to the spectral density of non-Hermitian sparse matrices. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  J. Bouchaud Crises and Collective Socio-Economic Phenomena: Simple Models and Challenges , 2012, 1209.0453.

[42]  Matthieu Wyart,et al.  Marginal Stability in Structural, Spin, and Electron Glasses , 2014, 1406.7669.

[43]  G. Biroli,et al.  Marginally stable equilibria in critical ecosystems , 2017, New Journal of Physics.

[44]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[45]  T. Tao,et al.  RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.

[46]  Fyodorov,et al.  Localization in ensemble of sparse random matrices. , 1991, Physical review letters.

[47]  J. Bouchaud,et al.  Instabilities in large economies: aggregate volatility without idiosyncratic shocks , 2014, 1406.5022.

[48]  Paolo Tasca,et al.  Diversification and Financial Stability , 2011 .

[49]  F L Metz,et al.  Spectra of sparse non-hermitian random matrices: an analytical solution. , 2012, Physical review letters.

[50]  E. Wigner Random Matrices in Physics , 1967 .

[51]  Dante R Chialvo,et al.  Emergent self-organized complex network topology out of stability constraints. , 2008, Physical review letters.

[52]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[53]  Alireza Tahbaz-Salehi,et al.  The Network Origins of Large Economic Downturns ∗ , 2013 .

[54]  Giacomo Livan,et al.  Statistical mechanics of complex economies , 2015, 1511.09203.

[55]  William A. Brock,et al.  Discrete Choice with Social Interactions , 2001 .

[56]  Vasco M. Carvalho,et al.  The Great Diversification and its Undoing , 2010 .

[57]  P. M. Shearer,et al.  Zipf Distribution of U . S . Firm Sizes , 2022 .

[58]  D. Raval The micro elasticity of substitution and non‐neutral technology , 2019, The RAND Journal of Economics.

[59]  G. Biroli,et al.  Anderson Model on Bethe Lattices : Density of States, Localization Properties and Isolated Eigenvalue(Frontiers in Nonequilibrium Physics-Fundamental Theory, Glassy & Granular Materials, and Computational Physics-) , 2010, 1005.0342.

[60]  ROBERT M. MAY,et al.  Will a Large Complex System be Stable? , 1972, Nature.

[61]  D. Thouless,et al.  Electrons in disordered systems and the theory of localization , 1974 .

[62]  Christos Faloutsos,et al.  Epidemic thresholds in real networks , 2008, TSEC.

[63]  J. Cochrane,et al.  Shocks , 1994 .

[64]  John Sutton,et al.  The Variance of Firm Growth Rates: The Scaling Puzzle , 2001 .

[65]  R. Monasson,et al.  LETTER TO THE EDITOR: A single defect approximation for localized states on random lattices , 1999, cond-mat/9902032.

[66]  Isabelle Mejean,et al.  Large firms and international business cycle comovement , 2017 .

[67]  R. Axtell Zipf Distribution of U.S. Firm Sizes , 2001, Science.