Optimized orthogonal translation of unnatural amino acids enables spontaneous protein double-labelling and FRET

The ability to introduce different biophysical probes into defined positions in target proteins will provide powerful approaches for interrogating protein structure, function and dynamics. However, methods for site-specifically incorporating multiple distinct unnatural amino acids are hampered by their low efficiency. Here we provide a general solution to this challenge by developing an optimized orthogonal translation system that uses amber and evolved quadruplet-decoding transfer RNAs to encode numerous pairs of distinct unnatural amino acids into a single protein expressed in Escherichia coli with a substantial increase in efficiency over previous methods. We also provide a general strategy for labelling pairs of encoded unnatural amino acids with different probes via rapid and spontaneous reactions under physiological conditions. We demonstrate the utility of our approach by genetically directing the labelling of several pairs of sites in calmodulin with fluorophores and probing protein structure and dynamics by Förster resonance energy transfer. A series of quadruplet decoding tRNAs has been developed to form an optimized orthogonal translation system. These tRNAs enable efficient, site-specific incorporation of multiple unnatural amino acids into a protein, with a substantial increase in yield over previous methods. The amino acids are then used to site-specifically label a protein with a pair of fluorophores, enabling studies of the protein's dynamics.

[1]  J. Chin,et al.  Genetic encoding and labeling of aliphatic azides and alkynes in recombinant proteins via a pyrrolysyl-tRNA Synthetase/tRNA(CUA) pair and click chemistry. , 2009, Journal of the American Chemical Society.

[2]  Carsten Schultz,et al.  Amino acids for Diels-Alder reactions in living cells. , 2012, Angewandte Chemie.

[3]  David H Russell,et al.  A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. , 2010, Angewandte Chemie.

[4]  J. Chin,et al.  Genetic Encoding of Bicyclononynes and trans-Cyclooctenes for Site-Specific Protein Labeling in Vitro and in Live Mammalian Cells via Rapid Fluorogenic Diels–Alder Reactions , 2012, Journal of the American Chemical Society.

[5]  K. Musier-Forsyth,et al.  Transfer RNA recognition by aminoacyl‐tRNA synthetases , 1999, Biopolymers.

[6]  Samantha L. Elliott,et al.  Catalytic Azide Reduction in Biological Environments , 2012, Chembiochem : a European journal of chemical biology.

[7]  P G Schultz,et al.  Expanding the genetic code: selection of efficient suppressors of four-base codons and identification of “shifty” four-base codons with a library approach in Escherichia coli , 2001, Journal of Molecular Biology.

[8]  Charles E. Bugg,et al.  Three-dimensional structure of calmodulin , 1985, Nature.

[9]  E. Lemke,et al.  Genetic Encoding of a Bicyclo[6.1.0]nonyne‐Charged Amino Acid Enables Fast Cellular Protein Imaging by Metal‐Free Ligation , 2012, Chembiochem : a European journal of chemical biology.

[10]  M. Sisido,et al.  FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids , 2006, Nature Methods.

[11]  J. Chin,et al.  Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. , 2012, Nature chemistry.

[12]  J. Chin,et al.  Synthesis of orthogonal transcription-translation networks , 2009, Proceedings of the National Academy of Sciences.

[13]  P. Schultz,et al.  An expanded genetic code in mammalian cells with a functional quadruplet codon. , 2013, ACS chemical biology.

[14]  Zhiyong Wang,et al.  Catalyst‐Free and Site‐Specific One‐Pot Dual‐Labeling of a Protein Directed by Two Genetically Incorporated Noncanonical Amino Acids , 2012, Chembiochem : a European journal of chemical biology.

[15]  Jason W. Chin,et al.  Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome , 2010, Nature.

[16]  Ad Bax,et al.  Solution structure of Ca2+–calmodulin reveals flexible hand-like properties of its domains , 2001, Nature Structural Biology.

[17]  Ryohei Ishii,et al.  Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. , 2008, Chemistry & biology.

[18]  J Haiech,et al.  Effects of cations on affinity of calmodulin for calcium: ordered binding of calcium ions allows the specific activation of calmodulin-stimulated enzymes. , 1981, Biochemistry.

[19]  Ernesto Carafoli,et al.  Calcium signaling: A tale for all seasons , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T Porumb Determination of calcium-binding constants by flow dialysis. , 1994, Analytical biochemistry.

[21]  P. Roller,et al.  Cyclization strategies in peptide derived drug design. , 2002, Current topics in medicinal chemistry.

[22]  J. Chin,et al.  Reprogramming the genetic code , 2012, Nature Reviews Genetics.

[23]  Carey K. Johnson Calmodulin, conformational states, and calcium signaling. A single-molecule perspective. , 2006, Biochemistry.

[24]  J. Chin,et al.  A network of orthogonal ribosome·mRNA pairs , 2005, Nature chemical biology.

[25]  S. Linse,et al.  Calcium binding to calmodulin and its globular domains. , 1991, The Journal of biological chemistry.

[26]  P. Farabaugh,et al.  Ribosome structure: revisiting the connection between translational accuracy and unconventional decoding , 2002, Trends in Biochemical Sciences.

[27]  Joseph M. Fox,et al.  Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. , 2008, Journal of the American Chemical Society.

[28]  P. Schultz,et al.  A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. , 2013, Biochemistry.

[29]  Michael T. Taylor,et al.  Genetically encoded tetrazine amino acid directs rapid site-specific in vivo bioorthogonal ligation with trans-cyclooctenes. , 2012, Journal of the American Chemical Society.

[30]  Andrew B. Martin,et al.  Addition of a photocrosslinking amino acid to the genetic code of Escherichia coli , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Jason W. Chin,et al.  Designer proteins: applications of genetic code expansion in cell biology , 2012, Nature Reviews Molecular Cell Biology.

[32]  S. Linse,et al.  Förster resonance energy transfer studies of calmodulin produced by native protein ligation reveal inter‐domain electrostatic repulsion , 2013, The FEBS journal.

[33]  J. Chin,et al.  Bioorthogonal reactions for labeling proteins. , 2014, ACS chemical biology.

[34]  R. Weissleder,et al.  Biomedical applications of tetrazine cycloadditions. , 2011, Accounts of chemical research.

[35]  R. Tsien,et al.  Creating new fluorescent probes for cell biology , 2002, Nature Reviews Molecular Cell Biology.

[36]  J. Sauer,et al.  Reaktivität einfacher offenkettiger und cyclischer dienophile bei Diels-Alder-reaktionen mit inversem elektronenbedarf , 1990 .

[37]  Andrew B. Martin,et al.  Addition of p-azido-L-phenylalanine to the genetic code of Escherichia coli. , 2002, Journal of the American Chemical Society.

[38]  P. Schultz,et al.  In vivo incorporation of an alkyne into proteins in Escherichia coli. , 2005, Bioorganic & medicinal chemistry letters.

[39]  Jaromír Balcar Reaktivitt von stickstoff-heterocyclen genenber cyclooctin als dienophil , 1983 .

[40]  Colin M. Fadzen,et al.  Labeling proteins with fluorophore/thioamide Förster resonant energy transfer pairs by combining unnatural amino acid mutagenesis and native chemical ligation. , 2013, Journal of the American Chemical Society.

[41]  F. Quiocho,et al.  A closed compact structure of native Ca(2+)-calmodulin. , 2003, Structure.

[42]  J. Chin,et al.  Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. , 2014, Chemical reviews.

[43]  Melanie I. Stefan,et al.  An allosteric model of calmodulin explains differential activation of PP2B and CaMKII , 2008, Proceedings of the National Academy of Sciences.

[44]  D. Söll,et al.  Pyrrolysine is not hardwired for cotranslational insertion at UAG codons , 2007, Proceedings of the National Academy of Sciences.

[45]  J. Chin,et al.  Expanding and reprogramming the genetic code of cells and animals. , 2014, Annual review of biochemistry.

[46]  T. Carell,et al.  A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. , 2012, Angewandte Chemie.

[47]  J. Chin,et al.  Reprogramming the genetic code: from triplet to quadruplet codes. , 2012, Angewandte Chemie.

[48]  J. Chin,et al.  Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion , 2007, Nature Biotechnology.

[49]  Jason W. Chin,et al.  Reprogramming the Genetic Code: From Triplet to Quadruplet Codes , 2012 .

[50]  J. Krzycki,et al.  PylSn and the Homologous N-terminal Domain of Pyrrolysyl-tRNA Synthetase Bind the tRNA That Is Essential for the Genetic Encoding of Pyrrolysine* , 2012, The Journal of Biological Chemistry.

[51]  S. Benkovic,et al.  Production of cyclic peptides and proteins in vivo. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[52]  A. Dong,et al.  Calcium-induced changes in calmodulin structural dynamics and thermodynamics. , 2012, International journal of biological macromolecules.

[53]  J. F. Atkins,et al.  A Gripping Tale of Ribosomal Frameshifting: Extragenic Suppressors of Frameshift Mutations Spotlight P-Site Realignment , 2009, Microbiology and Molecular Biology Reviews.

[54]  Mitsuhiko Ikura,et al.  Calmodulin in Action Diversity in Target Recognition and Activation Mechanisms , 2002, Cell.

[55]  J S Sack,et al.  Structure of a recombinant calmodulin from Drosophila melanogaster refined at 2.2-A resolution. , 1992, The Journal of biological chemistry.