The time of bootstrap percolation with dense initial sets for all thresholds

We study the percolation time of the r-neighbour bootstrap percolation model on the discrete torus i¾?/ni¾?d. For t at most a polylog function of n and initial infection probabilities within certain ranges depending on t, we prove that the percolation time of a random subset of the torus is exactly equal to t with high probability as n tends to infinity. Our proof rests crucially on three new extremal theorems that together establish an almost complete understanding of the geometric behaviour of the r-neighbour bootstrap process in the dense setting. The special case d-r=0 of our result was proved recently by Bollobas, Holmgren, Smith and Uzzell. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 47, 1-29, 2015

[1]  Louis H. Y. Chen Poisson Approximation for Dependent Trials , 1975 .

[2]  B. Bollob'as,et al.  Bootstrap percolation in three dimensions , 2008, 0806.4485.

[3]  Michael Aizenman,et al.  Metastability effects in bootstrap percolation , 1988 .

[4]  Y. Peres,et al.  Growth Rates and Explosions in Sandpiles , 2009, 0901.3805.

[5]  Mark S. Granovetter Threshold Models of Collective Behavior 1 , 2008 .

[6]  Michelle L. Wachs,et al.  Poset Homology of Rees Products, and q-Eulerian Polynomials , 2008, Electron. J. Comb..

[7]  Fabrizio Luccio,et al.  Dynamic monopolies in tori , 2004, Discret. Appl. Math..

[8]  Robert Morris Minimal Percolating Sets in Bootstrap Percolation , 2009, Electron. J. Comb..

[9]  Mark S. Granovetter Threshold Models of Collective Behavior , 1978, American Journal of Sociology.

[10]  Emilio N.M. Cirillo,et al.  Finite Size Scaling in Three-Dimensional Bootstrap Percolation , 1998 .

[11]  Michal Przykucki,et al.  On Slowly Percolating Sets of Minimal Size in Bootstrap Percolation , 2013, Electron. J. Comb..

[12]  Aonghus Lawlor,et al.  Exact solution of a jamming transition: closed equations for a bootstrap percolation problem. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  H. Amini Bootstrap Percolation in Living Neural Networks , 2009, 0910.0627.

[14]  Michal Przykucki Maximal Percolation Time in Hypercubes Under 2-Bootstrap Percolation , 2012, Electron. J. Comb..

[15]  Béla Bollobás,et al.  Bootstrap Percolation in High Dimensions , 2009, Combinatorics, Probability and Computing.

[16]  Svante Janson,et al.  Majority bootstrap percolation on the random graph G(n,p) , 2010, 1012.3535.

[17]  Andrew J. Uzzell,et al.  The time of bootstrap percolation with dense initial sets , 2012, 1205.3922.

[18]  G. K. Eagleson,et al.  Poisson approximation for some statistics based on exchangeable trials , 1983, Advances in Applied Probability.

[19]  R. Morris Zero-temperature Glauber dynamics on $${\mathbb{Z}^d}$$ , 2011 .

[20]  Eric Riedl,et al.  Largest Minimal Percolating Sets in Hypercubes under 2-Bootstrap Percolation , 2010, Electron. J. Comb..

[21]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J.-P. Eckmann,et al.  Remarks on bootstrap percolation in metric networks , 2009 .

[23]  P. Leath,et al.  Bootstrap percolation on a Bethe lattice , 1979 .

[24]  H. Duminil-Copin,et al.  Sharp metastability threshold for an anisotropic bootstrap percolation model , 2010, 1010.4691.

[25]  Béla Bollobás,et al.  The time of bootstrap percolation in two dimensions , 2013, 1305.5444.

[26]  F. Manzo,et al.  The Threshold Regime of Finite Volume Bootstrap Percolation , 2001 .

[27]  Béla Bollobás,et al.  Bootstrap percolation on the hypercube , 2006 .

[28]  C. Stein A bound for the error in the normal approximation to the distribution of a sum of dependent random variables , 1972 .

[29]  Fred S. Roberts,et al.  Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion , 2009, Discret. Appl. Math..

[30]  A. Holroyd Sharp metastability threshold for two-dimensional bootstrap percolation , 2002, math/0206132.

[31]  H. Duminil-Copin,et al.  The sharp threshold for bootstrap percolation in all dimensions , 2010, 1010.3326.

[32]  J. P. Garrahan,et al.  Kinetically Constrained Models , 2010, 1009.6113.