Competition for limiting amounts of oxygen between Nitrosomonas europaea and Nitrobacter winogradskyi grown in mixed continuous cultures

[1]  F. Healey Slope of the Monod equation as an indicator of advantage in nutrient competition , 1980, Microbial Ecology.

[2]  S. Gerards,et al.  Kinetics of nitrite oxidation in two Nitrobacter species grown in nitrite-limited chemostats , 1992, Archives of Microbiology.

[3]  B. B. Ward,et al.  Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus , 1987, Archives of Microbiology.

[4]  E. Bock,et al.  Morphologische und physiologische Untersuchungen an Zellen von Nitrobacter winogradskyi Buch , 1969, Archiv für Mikrobiologie.

[5]  P. Schöberl,et al.  Das Verhalten der nitrifizierenden Bakterien gegenüber gelöstem Sauerstoff , 1964, Archiv für Mikrobiologie.

[6]  S. Gerards,et al.  The occurrence of chemolitho-autotrophic nitrifiers in water-saturated grassland soils , 2004, Microbial Ecology.

[7]  N. Pfennig,et al.  Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and in marine sediments , 2004, Archives of Microbiology.

[8]  P. Tobback,et al.  Autotrophic growth and synthesis of reserve polymers in Nitrobacter winogradskyi , 2004, Archiv für Mikrobiologie.

[9]  W. Konings,et al.  The bioenergetics of ammonia and hydroxylamine oxidation in Nitrosomonas europaea at acid and alkaline pH , 1992, Archives of Microbiology.

[10]  H. J. Laanbroek,et al.  Competition for Ammonium between Nitrifying and Heterotrophic Bacteria in Dual Energy-Limited Chemostats , 1991, Applied and environmental microbiology.

[11]  K. Hanaki,et al.  Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor. , 1990 .

[12]  K. Hanaki,et al.  Effects of the activity of heterotrophs on nitrification in a suspended-growth reactor , 1990 .

[13]  W. Armstrong,et al.  Root morphology and aerenchyma formation as indicators for the flood-tolerance of Rumex species , 1989 .

[14]  W. Armstrong,et al.  The relative roles of internal aeration, radial oxygen losses, iron exclusion and nutrient balance in flood-tolerance of Rumex species , 1989 .

[15]  J. Prosser Autotrophic nitrification in bacteria. , 1989, Advances in microbial physiology.

[16]  P. Christensen,et al.  Temporal Variation of Denitrification Activity in Plant-Covered, Littoral Sediment from Lake Hampen, Denmark , 1986, Applied and environmental microbiology.

[17]  D. Button Kinetics of nutrient-limited transport and microbial growth. , 1985, Microbiological reviews.

[18]  W. Helder,et al.  Estuarine nitrite maxima and nitrifying bacteria (Ems-Dollard estuary) , 1983 .

[19]  R. Bardin,et al.  Growth of two serotypes of Nitrobacter in mixotrophic and chemoorganotrophic conditions , 1983 .

[20]  K. Sand‐Jensen,et al.  Oxygen release from roots of submerged aquatic macrophytes , 1982 .

[21]  W. Armstrong Aeration in Higher Plants , 1980 .

[22]  R. Ahlert,et al.  Nitrification and nitrogen removal , 1977 .

[23]  A. Cornish-Bowden,et al.  The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. , 1974, The Biochemical journal.

[24]  A. Hooper,et al.  Polyphosphate and Orthophosphate Content of Nitrosomonas europaea as a Function of Growth , 1970, Journal of bacteriology.

[25]  A. Smith,et al.  Acetate Assimilation by Nitrobacter agilis in Relation to Its “Obligate Autotrophy” , 1968, Journal of bacteriology.

[26]  W. Armstrong,et al.  Oxygen Diffusion from the Roots of Some British Bog Plants , 1964, Nature.

[27]  J. Partington Inorganic and Analytical Chemistry , 1964, Nature.