Novel CMOS-Compatible Athermal and Polarization-Insensitive Ring Resonator as Photonic Notch Filter

A hybrid titanium dioxide/silicon rich nitride ring resonator with the unique feature of being simultaneously athermal and polarization-insensitive is reported for the first time to our knowledge. Although its potential application domain is extremely wide, the designed integrated microphotonic cavity, having a racetrack shape, is intended for notch filtering in a microwave photonic passband filter. A careful selection of the CMOS-compatible material system and an innovative design approach have allowed a very low dependence of the filtering shape on the input beam polarization and, simultaneously, a thermal drift of the resonance wavelength <1.5 pm/K. The numerically estimated Q-factor, free spectral range, and extinction ratio are compliant with the requirements of the selected application, being equal to 7.8 × 104, 4 nm, and 30.7 dB, respectively.

[1]  K. Vahala,et al.  Soliton microcomb range measurement , 2017, Science.

[2]  Wei-Ping Huang,et al.  Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximations , 1998 .

[3]  A Säynätjoki,et al.  Towards broad-bandwidth polarization-independent nanostrip waveguide ring resonators. , 2013, Optics express.

[4]  S. Janz,et al.  Design of polarization-insensitive ring resonators in silicon-on-insulator using MMI couplers and cladding stress engineering , 2006, IEEE Photonics Technology Letters.

[5]  Shiyoshi Yokoyama,et al.  Athermal and High-Q Hybrid TiO2–Si3N4 Ring Resonator via an Etching-Free Fabrication Technique , 2015 .

[6]  A. Universal relations for coupling of optical power between microresonators and dielectric waveguides , 2004 .

[7]  Nicolas K. Fontaine,et al.  Hybrid III-V/Silicon Laser with Integrated Athermal Wavelength Locker , 2017, 2017 European Conference on Optical Communication (ECOC).

[8]  Vittorio M. N. Passaro,et al.  Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides , 2009 .

[9]  J. V. Galan,et al.  Single Bandpass Photonic Microwave Filter Based on a Notch Ring Resonator , 2010, IEEE Photonics Technology Letters.

[10]  F. Y. Gardes,et al.  Si-rich Silicon Nitride for Nonlinear Signal Processing Applications , 2017, Scientific Reports.

[11]  Caterina Ciminelli,et al.  A High- $Q$ InP Resonant Angular Velocity Sensor for a Monolithically Integrated Optical Gyroscope , 2016, IEEE Photonics Journal.

[12]  Feng Yu,et al.  Complementary metal-oxide-semiconductor compatible athermal silicon nitride/titanium dioxide hybrid micro-ring resonators , 2013 .

[13]  T. Baehr‐Jones,et al.  Analysis of the tuning sensitivity of silicon-on-insulator optical ring resonators , 2005, Journal of Lightwave Technology.

[14]  C. Ciminelli,et al.  Fully three-dimensional accurate modeling of scattering loss in optical waveguides , 2009 .

[15]  Juthika Basak,et al.  CMOS-compatible, athermal silicon ring modulators clad with titanium dioxide. , 2013, Optics express.

[16]  M. N. Armenise,et al.  Resonant Graphene-Based Tunable Optical Delay Line , 2015, IEEE Photonics Journal.

[17]  I. P. Kaminow,et al.  Filter Characteristics of Codirectionally Coupled Waveguides with Weighted Coupling , 1978 .

[18]  Eric Mazur,et al.  Submicrometer-wide amorphous and polycrystalline anatase TiO2 waveguides for microphotonic devices. , 2012, Optics express.

[19]  Michal Lipson,et al.  Athermal silicon microring resonators with titanium oxide cladding. , 2013, Optics express.

[20]  Mario Nicola Armenise,et al.  New ultrasensitive resonant photonic platform for label-free biosensing. , 2015, Optics express.

[21]  M. Furuhashi,et al.  Development of microfabricated TiO2 channel waveguides , 2011 .

[22]  Kwang-Ting Cheng,et al.  Athermal silicon ring resonators clad with titanium dioxide for 1.3µm wavelength operation. , 2015, Optics express.

[23]  Sailing He,et al.  Polarization-Insensitive Ultrasmall Microring Resonator Design Based on Optimized Si Sandwich Nanowires , 2007, IEEE Photonics Technology Letters.

[24]  Kwang-Ting Cheng,et al.  Thermal stress implications in athermal TiO2 waveguides on a silicon substrate. , 2014, Optics express.

[25]  M. Lipson,et al.  CMOS-compatible athermal silicon microring resonators. , 2009, Optics express.

[26]  Mukesh Kumar,et al.  Analysis of TiO2 for microelectronic applications: effect of deposition methods on their electrical properties , 2011 .

[27]  Henry I. Smith,et al.  Polarization-transparent microphotonic devices in the strong confinement limit , 2007 .

[28]  Graham T. Reed,et al.  Polarization-independent optical racetrack resonators using rib waveguides on silicon-on-insulator , 2004 .

[29]  Jörgen Bengtsson,et al.  Linear and nonlinear characterization of low-stress high-confinement silicon-rich nitride waveguides. , 2015, Optics express.

[30]  C.W. Holzwarth,et al.  Precision Tunable Silicon Compatible Microring Filters , 2008, IEEE Photonics Technology Letters.

[31]  P. Dumon,et al.  Silicon microring resonators , 2012 .

[32]  A. Ksendzov,et al.  Integrated optics ring-resonator sensors for protein detection. , 2005, Optics letters.

[33]  Doo Seok Jeong,et al.  Titanium dioxide thin films for next-generation memory devices , 2013 .

[34]  Michal Lipson,et al.  Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold , 2017 .

[35]  S. H. Lee,et al.  An integrated ultra-high-Q resonator for optical clocks, synthesizers, gyroscopes and spectroscopy , 2017, 2017 IEEE Photonics Conference (IPC).

[36]  Gyungock Kim,et al.  Temperature Dependence of Silicon Nanophotonic Ring Resonator With a Polymeric Overlayer , 2007, Journal of Lightwave Technology.

[37]  John E. Bowers,et al.  Integrated waveguide coupled Si_3N_4 resonators in the ultrahigh-Q regime , 2014 .

[38]  Lukas Chrostowski,et al.  Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement. , 2010, Optics express.

[39]  H. Haus,et al.  Microring resonator channel dropping filters , 1997 .

[40]  Markku Kuittinen,et al.  Low-Loss Titanium Dioxide Strip Waveguides Fabricated by Atomic Layer Deposition , 2014, Journal of Lightwave Technology.