Computing differential characteristic sets by change of ordering

We describe an algorithm for converting a characteristic set of a prime differential ideal from one ranking into another. This algorithm was implemented in many different languages and has been applied within various software and projects. It permitted to solve formerly unsolved problems.

[1]  Oleg Golubitsky,et al.  Algebraic transformation of differential characteristic decompositions from one ranking to another , 2009, J. Symb. Comput..

[2]  François Boulier,et al.  Differential Elimination and Biological Modelling , 2006 .

[3]  François Boulier,et al.  Réécriture algébrique dans les systèmes d'équations différentielles polynomiales en vue d'applications dans les Sciences du Vivant , 2006 .

[4]  Xin Jin,et al.  Change of order for regular chains in positive dimension , 2008, Theor. Comput. Sci..

[5]  R. Howe,et al.  ON CLASSICAL INVARIANT THEORY , 2010 .

[6]  Craig Huneke,et al.  Commutative Algebra I , 2012 .

[7]  Sofi Stenström Differential Gröbner bases , 2002 .

[8]  Marc Moreno Maza,et al.  On the Theories of Triangular Sets , 1999, J. Symb. Comput..

[9]  Marc Moreno Maza,et al.  Bounds and algebraic algorithms in differential algebra: the ordinary case , 2006, Challenges in Symbolic Computation Software.

[10]  P. Aubry,et al.  Ensembles triangulaires de polynomes et resolution de systemes algebriques. Implantation en axiom , 1999 .

[11]  J. L. S. Luk Mémoire d'habilitation à diriger des recherches , 2000 .

[12]  William Y. Sit THE RITT–KOLCHIN THEORY FOR DIFFERENTIAL POLYNOMIALS , 2002 .

[13]  Evelyne Hubert,et al.  Notes on Triangular Sets and Triangulation-Decomposition Algorithms II: Differential Systems , 2001, SNSC.

[14]  A. Rosenfeld Specializations in differential algebra , 1959 .

[15]  Hamid Maarouf,et al.  Unmixed-dimensional Decomposition of a Finitely Generated Perfect Differential Ideal , 2001, J. Symb. Comput..

[16]  François Lemaire,et al.  Computing canonical representatives of regular differential ideals , 2000, ISSAC.

[17]  L. Weisner,et al.  Foundations of the theory of algebraic invariants , 1966 .

[18]  François Boulier,et al.  Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.

[19]  Michael Kalkbrener,et al.  A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..

[20]  J. Pommaret,et al.  New perspectives in control theory for partial differential equations , 1992 .

[21]  L. Vietoris Theorie der endlichen und unendlichen Graphen , 1937 .

[22]  K. B. O’Keefe,et al.  The differential ideal $[uv]$ , 1966 .

[23]  François Boulier,et al.  Computing representations for radicals of finitely generated differential ideals , 2009, Applicable Algebra in Engineering, Communication and Computing.

[24]  Mohab Safey El Din,et al.  New Structure Theorem for Subresultants , 2000, J. Symb. Comput..

[25]  Evelyne Hubert,et al.  Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..

[26]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[27]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[28]  François Boulier,et al.  Efficient computation of regular differential systems by change of rankings using Kähler differentials , 2000 .

[29]  Marc Moreno Maza,et al.  Computation of canonical forms for ternary cubics , 2002, ISSAC '02.

[30]  E. Kolchin Differential Algebra and Algebraic Groups , 2012 .

[31]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[32]  Gregory J. Reid,et al.  Reduction of systems of nonlinear partial differential equations to simplified involutive forms , 1996, European Journal of Applied Mathematics.

[33]  Dongming Wang Elimination Practice - Software Tools and Applications , 2004 .

[34]  M. M. Maza,et al.  Well known theorems on triangular systems and the D5 principle , 2006 .

[35]  Heinz Kredel,et al.  Gröbner Bases: A Computational Approach to Commutative Algebra , 1993 .

[36]  F. Ollivier Le probleme de l'identifiabilite structurelle globale : approche theorique, methodes effectives et bornes de complexite , 1990 .

[37]  Hanspeter Kraft,et al.  Geometrische Methoden in der Invariantentheorie , 1984 .

[38]  Daniel Lazard,et al.  A new method for solving algebraic systems of positive dimension , 1991, Discret. Appl. Math..

[39]  Sally Morrison The Differential Ideal [P]: Minfty , 1999, J. Symb. Comput..

[40]  Lionel Ducos Optimizations of the subresultant algorithm , 2000 .

[41]  François Boulier,et al.  Étude et implantation de quelques algorithmes en algèbre différentielle. (Study and implementation of some algorithms in differential algebra) , 1994 .

[42]  M. M. Maza On Triangular Decompositions of Algebraic Varieties , 2000 .

[43]  Marc Moreno Maza,et al.  Polynomial Gcd Computations over Towers of Algebraic Extensions , 1995, AAECC.