The Impact of the Pull of the Recent on the History of Marine Diversity

Up to 50% of the increase in marine animal biodiversity through the Cenozoic at the genus level has been attributed to a sampling bias termed “the Pull of the Recent,” the extension of stratigraphic ranges of fossil taxa by the relatively complete sampling of the Recent biota. However, 906 of 958 living genera and subgenera of bivalve mollusks having a fossil record occur in the Pliocene or Pleistocene. The Pull of the Recent thus accounts for only 5% of the Cenozoic increase in bivalve diversity, a major component of the marine record, suggesting that the diversity increase is likely to be a genuine biological pattern.

[1]  B. Rosen,et al.  Cenozoic palaeogeography and the rise of modern biodiversity patterns , 2002, Geological Society, London, Special Publications.

[2]  W. Ausich,et al.  Treatise on Invertebrate Paleontology , 1965 .

[3]  S. Donovan,et al.  The adequacy of the fossil record , 1998 .

[4]  C. M. Pease On the declining extinction and origination rates of fossil taxa , 1992, Paleobiology.

[5]  Philip M. Novack-Gottshall,et al.  Effects of sampling standardization on estimates of Phanerozoic marine diversification , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. Kidwell,et al.  Bivalve taphonomy in tropical mixed siliciclastic-carbonate settings. II. Effect of bivalve life habits and shell types , 2000, Paleobiology.

[7]  G. C. Johns,et al.  Local Selection and Latitudinal Variation in a Marine Predator-Prey Interaction , 2003, Science.

[8]  David M. Raup,et al.  Phanerozoic marine diversity and the fossil record , 1981, Nature.

[9]  T. A. Darragh Molluscan biogeography and biostratigraphy of the Tertiary of southeastern Australia , 1985 .

[10]  Arnold I. Miller,et al.  Modeling bivalve diversification: the effect of interaction on a macroevolutionary system , 1988, Paleobiology.

[11]  G. Rowe Deep-sea biology , 1983 .

[12]  N. Landman Iterative progenesis in Upper Cretaceous ammonites , 1989, Paleobiology.

[13]  J M Adrain,et al.  An empirical assessment of taxic paleobiology. , 2000, Science.

[14]  S. Kidwell,et al.  Influence of Organic Matrix on the Post-Mortem Destruction of Molluscan Shells , 1993, The Journal of Geology.

[15]  O. H. Walliser Global events and event stratigraphy in the Phanerozoic , 1996 .

[16]  A. Smith,et al.  Large-scale heterogeneity of the fossil record: implications for Phanerozoic biodiversity studies. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[17]  D. Raup,et al.  Selectivity of end-Cretaceous marine bivalve extinctions. , 1995, Science.

[18]  J. W. Valentine,et al.  A provincial model of Phanerozoic marine diversity , 1978, Paleobiology.

[19]  Michael J. Benton,et al.  Biodiversity on land and in the sea , 2001 .

[20]  M. Foote Origination and extinction components of taxonomic diversity: general problems , 2000, Paleobiology.

[21]  J. Jackson,et al.  Measuring Past Biodiversity , 2001, Science.

[22]  S. Peters,et al.  Biodiversity in the Phanerozoic: a reinterpretation , 2001, Paleobiology.

[23]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[24]  R. Bambach Seafood through time: changes in biomass, energetics, and productivity in the marine ecosystem , 1993, Paleobiology.

[25]  B. Maureille La redécouverte du nouveau-né néandertalien Le Moustier 2 , 2002 .

[26]  J. Sepkoski,et al.  Absolute measures of the completeness of the fossil record , 1999, Nature.

[27]  J. Sepkoski,et al.  Biodiversity: Past, Present, and Future , 1997, Journal of Paleontology.

[28]  S. Kidwell,et al.  Taphonomy and paleobiology , 2000, Paleobiology.