Effect of particle size and crosslinking on the toughening of core-shell-type rubber-modified poly(lactic acid) composites

[1]  P. Dubois,et al.  Design of highly tough poly(L-lactide)-based ternary blends for automotive applications , 2016 .

[2]  Jinbo Zhu,et al.  A comparative study on different rubbery modifiers: Effect on morphologies, mechanical, and thermal properties of PLA blends , 2016 .

[3]  Xiongwei Qu,et al.  Super-tough poly(butylene terephthalate) based blends by modification with core-shell structured polyacrylic nanoparticles , 2015 .

[4]  Hong Zhang,et al.  Toughening of poly(l-lactide) modified by a small amount of acrylonitrile−butadiene−styrene core-shell copolymer , 2015 .

[5]  Li-song Dong,et al.  Toughening of polylactide with epoxy-functionalized methyl methacrylate–butyl acrylate copolymer , 2014, Polymer Bulletin.

[6]  Kunyu Zhang,et al.  Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance. , 2014, ACS applied materials & interfaces.

[7]  Rahul K Gupta,et al.  Extensional Rheological Investigation of Biodegradable Polylactide‐Nanographite Platelet Composites via Constitutive Equation Modeling , 2014 .

[8]  S. Słomkowski,et al.  Polylactides—an overview , 2014 .

[9]  Chaobin He,et al.  Biodegradable “Core–Shell” Rubber Nanoparticles and Their Toughening of Poly(lactides) , 2013 .

[10]  Q. Fu,et al.  Toughening of poly(l-lactide) with poly(ε-caprolactone): Combined effects of matrix crystallization and impact modifier particle size , 2013 .

[11]  P. Dubois,et al.  Toughening of polylactide by tailoring phase-morphology with P[CL-co-LA] random copolyesters as biodegradable impact modifiers , 2013 .

[12]  Lijing Han,et al.  Toughening of polylactide by melt blending with methyl methacrylate–butadiene–styrene copolymer , 2012 .

[13]  Y. Wang,et al.  Improvement in toughness and heat resistance of poly(lactic acid)/polycarbonate blend through twin-screw blending: Influence of compatibilizer type , 2012 .

[14]  Wenjia Song,et al.  Effects of ionomer characteristics on reactions and properties of poly(lactic acid) ternary blends prepared by reactive blending , 2012 .

[15]  Z. Ishak,et al.  Thermal, mechanical, and morphological properties of polylactic acid toughened with an impact modifier , 2012 .

[16]  H. Deng,et al.  Tailoring impact toughness of poly(L-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. , 2012, ACS applied materials & interfaces.

[17]  P. J. Lemstra,et al.  Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents , 2012 .

[18]  Mingyao Zhang,et al.  Polylactide toughening with epoxy-functionalized grafted acrylonitrile–butadiene–styrene particles , 2011 .

[19]  Kunyu Zhang,et al.  Improvement in Toughness and Crystallization of Poly(L-lactic acid) by Melt Blending with Poly(epichlorohydrin-co-ethylene oxide) , 2011 .

[20]  Hongzhi Liu,et al.  Research progress in toughening modification of poly(lactic acid) , 2011 .

[21]  Juan Han,et al.  Preparation and characterization of biodegradable polylactide/thermoplastic polyurethane elastomer blends , 2011 .

[22]  Wenjia Song,et al.  Interaction of Microstructure and Interfacial Adhesion on Impact Performance of Polylactide (PLA) Ternary Blends , 2011 .

[23]  R. P. John,et al.  An overview of the recent developments in polylactide (PLA) research. , 2010, Bioresource technology.

[24]  L. Matuana,et al.  Impact Modification of Polylactide with a Biodegradable Ethylene/Acrylate Copolymer , 2010 .

[25]  Megan L. Robertson,et al.  Reactive Compatibilization of Poly(l-lactide) and Conjugated Soybean Oil , 2010 .

[26]  A. Cunha,et al.  Mechanical properties of poly(ε‐caprolactone) and poly(lactic acid) blends , 2009 .

[27]  C. Wan,et al.  Toughening modification of PLLA/PBS blends via in situ compatibilization , 2009 .

[28]  M. Hillmyer,et al.  Block copolymers and melt blends of polylactide with Nodax microbial polyesters: preparation and mechanical properties. , 2007, Journal of biotechnology.

[29]  H. Hamada,et al.  The effect of crosslinking on the mechanical properties of polylactic acid/polycaprolactone blends , 2006 .

[30]  Jiarui Shen,et al.  Effect of the Shell Thickness of Methacrylate-Butadiene-Styrene Core–Shell Impact Modifier on Toughening Polyvinyl Chloride , 2006 .

[31]  M. Wolcott,et al.  Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. , 2006, Biomacromolecules.

[32]  F. Chang,et al.  Effect of the Core-Shell Impact Modifier Shell Thickness on Toughening PVC , 2004 .

[33]  T. Yamane,et al.  Morphologies and mechanical properties of polylactide Blends with medium chain length poly(3-hydroxyalkanoate) and chemically modified poly(3-hydroxyalkanoate) , 2004 .

[34]  I. Narisawa,et al.  Fracture and impact strength of poly(vinyl chloride)/methyl methacrylate/butadiene/styrene polymer blends , 1997 .

[35]  Chibeom Park,et al.  Effects of particle size and rubber content on fracture toughness in rubber‐modified epoxies , 1996 .

[36]  D. R. Paul,et al.  Toughening of nylon 6 with core-shell impact modifiers : effect of matrix molecular weight , 1996 .

[37]  G. Groeninckx,et al.  Cavitation versus debonding during deformation of rubber-modified poly(vinyl chloride) , 1995 .

[38]  G. Groeninckx,et al.  Toughening behaviour of rubber-modified thermoplastic polymers involving very small rubber particles: 1. A criterion for internal rubber cavitation , 1994 .

[39]  Souheng Wu Chain structure, phase morphology, and toughness relationships in polymers and blends , 1990 .