Kernel Support Vector Regression with imprecise output

We consider a regression problem where uncertainty aects to the dependent variable of the elements of the database. A model based on the standard -Support Vector Regression approach is given, where two hyperplanes need to be constructed to predict the interval-valued dependent variable. By using the Hausdor distance to measure the error between predicted and real intervals,

[1]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[2]  Shun-Feng Su,et al.  Support vector interval regression networks for interval regression analysis , 2003, Fuzzy Sets Syst..

[3]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[4]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[5]  Luc Devroye,et al.  Distribution-free performance bounds with the resubstitution error estimate (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[6]  R. Brereton,et al.  Support vector machines for classification and regression. , 2010, The Analyst.

[7]  Peijun Guo,et al.  Possibilistic regression analysis , 2002 .

[8]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[9]  Dug Hun Hong,et al.  Interval Regression Analysis Using Support Vector Machine and Quantile Regression , 2005, FSKD.

[10]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[11]  Ralf Herbrich,et al.  Learning Kernel Classifiers: Theory and Algorithms , 2001 .

[12]  Frank Plastria,et al.  Support Vector Regression for imprecise data , 2007 .

[13]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2004 .

[14]  Olivier Gascuel,et al.  Distribution-free performance bounds with the resubstitution error estimate , 1992, Pattern Recognit. Lett..

[15]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[16]  Alexander J. Smola,et al.  Support Vector Regression Machines , 1996, NIPS.

[17]  Hideo Tanaka,et al.  Interval regression analysis by quadratic programming approach , 1998, IEEE Trans. Fuzzy Syst..

[18]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[19]  Dug Hun Hong,et al.  Support vector interval regression machine for crisp input and output data , 2006, Fuzzy Sets Syst..

[20]  Dug Hun Hong,et al.  Extended fuzzy regression models using regularization method , 2004, Inf. Sci..

[21]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[22]  Hideo Tanaka,et al.  Upper and lower approximation models in interval regression using regression quantile techniques , 1999, Eur. J. Oper. Res..

[23]  Yunqian Ma,et al.  Selection of Meta-parameters for Support Vector Regression , 2002, ICANN.

[24]  Dug Hun Hong,et al.  Support vector fuzzy regression machines , 2003, Fuzzy Sets Syst..

[25]  Pierpaolo D'Urso,et al.  Linear regression analysis for fuzzy = crisp input and fuzzy = crisp output data , 2015 .