Nonlocal conserved quantities, balance laws, and equations of motion

A formalism is developed whereby balance laws are directly obtained from nonlocal (integrodifferential) linear second-order equations of motion for systems described by several dependent variables. These laws augment the equations of motion as further useful information about the physical system and, under certain conditions, are shown to reduce to conservation laws. The formalism can be applied to physical systems whose equations of motion may be relativistic and either classical or quantum. It is shown to facilitate obtaining global conservation laws for quantities which include energy and momentum. Applications of the formalism are given for a nonlocal Schrödinger equation and for a system of local relativistic equations of motion describing particles of arbitrary integral spin.

[1]  A. Eringen On nonlocal fluid mechanics , 1972 .

[2]  K. Greider A unifying Clifford algebra formalism for relativistic fields , 1984 .

[3]  D. L. Pursey,et al.  Quark Model of the Deuteron , 1982 .

[4]  J. W. Humberston Classical mechanics , 1980, Nature.

[5]  Robert A. Becker,et al.  Introduction to Theoretical Mechanics , 1954 .

[6]  F. Byron,et al.  Mathematics of Classical and Quantum Physics , 1970 .

[7]  A nonlocal variational formulation of the equations of radiative transport , 1973 .

[8]  V. S. Volkov,et al.  Generalized Fokker–Planck equation for non‐Markovian processes , 1983 .

[9]  Peter G. Bergmann,et al.  Principles of Relativity Physics , 1967 .

[10]  L. Albert Scipio,et al.  Principles of continua with applications , 1966 .

[11]  S. Hojman,et al.  Comments on "Physical consequences of the choice of the Lagrangian" , 1982 .

[12]  D. Edelen Invariance theory for nonlocal variational principles—I extended variations , 1971 .

[13]  J. Lock,et al.  Physical consequences of anomalies in nonlocal potential problems , 1979 .

[14]  D. Edelen Invariance theory for nonlocal variational principles—IV. Lagrangian classes , 1971 .

[15]  M. Bunge Problems in the foundations of physics , 1971 .

[16]  S. Roy Condition for Nonexistence of Aharonov-Bohm Effect , 1980 .

[17]  D. Edelen Invariance theory for nonlocal variational principles—II weak invariance and global conservation laws☆ , 1971 .

[18]  D. Edelen Invariance theory for nonlocal variational principles—III strong and absolute invariance☆ , 1971 .

[19]  C. Lanczos The variational principles of mechanics , 1949 .

[20]  P. Havas The range of application of the lagrange formalism — I , 1957 .

[21]  R. Good PARTICLE ASPECT OF THE ELECTROMAGNETIC FIELD EQUATIONS , 1957 .

[22]  A. D. Fokker Ein invarianter Variationssatz für die Bewegung mehrerer elektrischer Massenteilchen , 1929 .

[23]  N. A. Lemos Physical consequences of the choice of the Lagrangian , 1981 .

[24]  D. Soper Classical field theory , 1976 .

[25]  A. Eringen Edge dislocation in nonlocal elasticity , 1977 .

[26]  Maurice A. Biot,et al.  Variational principles in heat transfer , 1970 .

[27]  D. Edelen,et al.  Nonlocal variations and local invariance of fields , 1969 .

[28]  Kommission hos Ejnar Munksgaard Det Kongelige Danske Videnskabernes Selskab : Matematisk-fysiske Meddelelser , 1959 .