Ab initio theory of Fano resonances in plasmonic nanostructures and metamaterials

An ab initio theory for Fano resonances in plasmonic nanostructures and metamaterials is de- veloped using Feshbach formalism. It reveals the role played by the electromagnetic modes and material losses in the system, and enables the engineering of Fano resonances in arbitrary geome- tries. A general formula for the asymmetric resonance in a non-conservative system is derived. The influence of the electromagnetic interactions on the resonance line shape is discussed and it is shown that intrinsic losses drive the resonance contrast, while its width is mostly determined by the coupling strength between the non-radiative mode and the continuum. The analytical model is in perfect agreement with numerical simulations.

[1]  Lukas Novotny,et al.  Principles of Nano-Optics by Lukas Novotny , 2006 .

[2]  O. Martin,et al.  Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[3]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[4]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[5]  Herman Feshbach,et al.  A Unified Theory of Nuclear Reactions, II , 1962 .

[6]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[7]  Niels Verellen,et al.  Fano resonances in individual coherent plasmonic nanocavities. , 2009, Nano letters.

[8]  Olivier J. F. Martin,et al.  Generalized field propagator for arbitrary finite-size photonic band gap structures , 1999 .

[9]  A. Bhatia,et al.  Line-shape parameters for 1P Feshbach resonances in He and Li+ , 1984 .

[10]  Olivier J. F. Martin,et al.  Controlling the Fano interference in a plasmonic lattice , 2007 .

[11]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[12]  Yasin Ekinci,et al.  Symmetry breaking in a plasmonic metamaterial at optical wavelength. , 2008, Nano letters.

[13]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[14]  O. Martin,et al.  Symmetry and selection rules for localized surface plasmon resonances in nanostructures , 2010 .

[15]  H. Giessen,et al.  Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. , 2003, Physical review letters.

[16]  Y. Wang,et al.  Plasmon-induced transparency in metamaterials. , 2008, Physical review letters.

[17]  Yuri S. Kivshar,et al.  Fano Resonances in Nanoscale Structures , 2010 .

[18]  O. Martin,et al.  Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[19]  S. Geltman,et al.  Compound Atom States for Two-Electron Systems , 1965 .

[20]  P. Nussenzveig,et al.  Classical analog of electromagnetically induced transparency , 2001, quant-ph/0107061.

[21]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[22]  Harald Giessen,et al.  Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. , 2009, Nature materials.

[23]  Michael Sarrazin,et al.  Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes , 2003, physics/0311013.

[24]  Shanhui Fan,et al.  Analysis of guided resonances in photonic crystal slabs , 2002 .

[25]  Niels Verellen,et al.  Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities. , 2010, ACS nano.

[26]  Benjamin Gallinet,et al.  Scattering on plasmonic nanostructures arrays modeled with a surface integral formulation , 2010 .

[27]  Tobias J. Kippenberg,et al.  Optomechanically Induced Transparency , 2010, Science.

[28]  Shanhui Fan,et al.  Temporal Coupled-Mode Theory for Fano Resonance in Light Scattering by a Single Obstacle † , 2009, 0909.3323.

[29]  F. G. D. Abajo Colloquium: Light scattering by particle and hole arrays , 2007, 0903.1671.

[30]  Arkady M. Satanin,et al.  Classical analogy of Fano resonances , 2006 .