Satb1 Is an Activity-Modulated Transcription Factor Required for the Terminal Differentiation and Connectivity of Medial Ganglionic Eminence-Derived Cortical Interneurons

Although previous work identified transcription factors crucial for the specification and migration of parvalbumin (PV)-expressing and somatostatin (SST)-expressing interneurons, the intrinsic factors required for the terminal differentiation, connectivity, and survival of these cell types remain uncharacterized. Here we demonstrate that, within subpopulations of cortical interneurons, Satb1 (special AT-rich binding protein) promotes terminal differentiation, connectivity, and survival in interneurons that express PV and SST. We find that conditional removal of Satb1 in mouse interneurons results in the loss of a majority of SST-expressing cells across all cortical layers, as well as some PV-expressing cells in layers IV and VI, by postnatal day 21. SST-expressing cells initially migrate to the cortex in Satb1 mutant mice, but receive reduced levels of afferent input and begin to die during the first postnatal week. Electrophysiological characterization indicates that loss of Satb1 function in interneurons results in a loss of functional inhibition of excitatory principal cells. These data suggest that Satb1 is required for medial ganglionic eminence-derived interneuron differentiation, connectivity, and survival.

[1]  Rafael Yuste,et al.  Persistently Active, Pacemaker-Like Neurons in Neocortex , 2007, Front. Neurosci..

[2]  Y. Yanagawa,et al.  Lhx6 Activity Is Required for the Normal Migration and Specification of Cortical Interneuron Subtypes , 2007, The Journal of Neuroscience.

[3]  M. Catsicas,et al.  Rapid onset of neuronal death induced by blockade of either axoplasmic transport or action potentials in afferent fibers during brain development , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  S. Anderson,et al.  NKX2.1 specifies cortical interneuron fate by activating Lhx6 , 2008, Development.

[5]  Kenneth Campbell,et al.  Identification of Two Distinct Progenitor Populations in the Lateral Ganglionic Eminence: Implications for Striatal and Olfactory Bulb Neurogenesis , 2003, The Journal of Neuroscience.

[6]  S. Mcconnell,et al.  Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex , 2008, Neuron.

[7]  G. Knott,et al.  Experience and Activity-Dependent Maturation of Perisomatic GABAergic Innervation in Primary Visual Cortex during a Postnatal Critical Period , 2004, The Journal of Neuroscience.

[8]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[9]  G. Miyoshi,et al.  The Requirement of Nkx2-1 in the Temporal Specification of Cortical Interneuron Subtypes , 2008, Neuron.

[10]  P. Brunjes Unilateral odor deprivation: Time course of changes in laminar volume , 1985, Brain Research Bulletin.

[11]  A. Zador,et al.  Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex , 2003, Nature.

[12]  Theofanis Karayannis,et al.  Neuronal activity is required for the development of specific cortical interneuron subtypes , 2011, Nature.

[13]  F. Rösler,et al.  The human dorsal action control system develops in the absence of vision. , 2009, Cerebral cortex.

[14]  P. Somogyi,et al.  Defined types of cortical interneurone structure space and spike timing in the hippocampus , 2005, The Journal of physiology.

[15]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[16]  Young Jae Woo,et al.  Satb1 Ablation Alters Temporal Expression of Immediate Early Genes and Reduces Dendritic Spine Density during Postnatal Brain Development , 2011, Molecular and Cellular Biology.

[17]  Li I. Zhang,et al.  Visual Representations by Cortical Somatostatin Inhibitory Neurons—Selective But with Weak and Delayed Responses , 2010, The Journal of Neuroscience.

[18]  R. Grosschedl,et al.  SUMO modification of a novel MAR-binding protein, SATB2, modulates immunoglobulin mu gene expression. , 2003, Genes & development.

[19]  O. Marín,et al.  The Embryonic Preoptic Area Is a Novel Source of Cortical GABAergic Interneurons , 2009, The Journal of Neuroscience.

[20]  J. Maruniak,et al.  Odor deprivation leads to reduced neurogenesis and reduced neuronal survival in the olfactory bulb of the adult mouse , 1994, Neuroscience.

[21]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[22]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[23]  G. Miyoshi,et al.  Genetic Fate Mapping Reveals That the Caudal Ganglionic Eminence Produces a Large and Diverse Population of Superficial Cortical Interneurons , 2010, The Journal of Neuroscience.

[24]  E. Rubel,et al.  Effects of unilateral cochlea removal on anteroventral cochlear nucleus neurons in developing gerbils , 1989, The Journal of comparative neurology.

[25]  M. Calcagnotto,et al.  Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy , 2005, Nature Neuroscience.

[26]  Gord Fishell,et al.  The Developmental Integration of Cortical Interneurons into a Functional Network , 2022 .

[27]  G. Fishell,et al.  The caudal ganglionic eminence is a source of distinct cortical and subcortical cell populations , 2002, Nature Neuroscience.

[28]  S. Anderson,et al.  The contribution of the ganglionic eminence to the neuronal cell types of the cerebral cortex. , 2000, Novartis Foundation symposium.

[29]  Y. Kubota,et al.  Physiological and morphological identification of somatostatin- or vasoactive intestinal polypeptide-containing cells among GABAergic cell subtypes in rat frontal cortex , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  J. DeFelipe,et al.  Neocortical neuronal diversity: chemical heterogeneity revealed by colocalization studies of classic neurotransmitters, neuropeptides, calcium-binding proteins, and cell surface molecules. , 1993, Cerebral cortex.

[31]  S. Anderson,et al.  NKX 2 . 1 specifies cortical interneuron fate by activating Lhx 6 , 2022 .

[32]  T. Kohwi-Shigematsu,et al.  SATB1 targets chromatin remodelling to regulate genes over long distances , 2002, Nature.

[33]  J. Rubenstein,et al.  Distinct molecular pathways for development of telencephalic interneuron subtypes revealed through analysis of Lhx6 mutants , 2008, The Journal of comparative neurology.

[34]  V E Koliatsos,et al.  Deafferentation Causes Apoptosis in Cortical Sensory Neurons in the Adult Rat , 1997, The Journal of Neuroscience.

[35]  O. Britanova,et al.  Satb2 Is a Postmitotic Determinant for Upper-Layer Neuron Specification in the Neocortex , 2008, Neuron.

[36]  S. Bertuzzi,et al.  Compromised generation of GABAergic interneurons in the brains of Vax1-/- mice , 2004, Development.

[37]  G. Miyoshi,et al.  Cerebral Cortex doi:10.1093/cercor/bhp038 Characterization of Nkx6-2-Derived , 2009 .

[38]  I. Fariñas,et al.  SATB2 Is a Multifunctional Determinant of Craniofacial Patterning and Osteoblast Differentiation , 2006, Cell.

[39]  H. Niida,et al.  The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. , 2000, Genes & development.

[40]  Erika E Fanselow,et al.  Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. , 2008, Journal of neurophysiology.

[41]  P. Ghazal,et al.  Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses , 2008, Nature Neuroscience.

[42]  G. Fishell,et al.  Cerebral Cortex doi:10.1093/cercor/bhm258 Gene Expression in Cortical Interneuron Precursors is Prescient of their Mature Function , 2008 .

[43]  T. Jenuwein,et al.  Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression. , 2009, Genes & development.

[44]  R. Linden,et al.  The survival of developing neurons: A review of afferent control , 1994, Neuroscience.

[45]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[46]  M. Ekker,et al.  Activity of dlx5a/dlx6a regulatory elements during zebrafish GABAergic neuron development , 2011, International Journal of Developmental Neuroscience.

[47]  S. Anderson,et al.  Distinct cortical migrations from the medial and lateral ganglionic eminences. , 2001, Development.

[48]  Chris J. McBain,et al.  Interneurons unbound , 2001, Nature Reviews Neuroscience.

[49]  Thomas K. Berger,et al.  Frequency‐dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex , 2009, The Journal of physiology.

[50]  G. Fishell,et al.  The Distinct Temporal Origins of Olfactory Bulb Interneuron Subtypes , 2008, The Journal of Neuroscience.

[51]  M. C. Angulo,et al.  Molecular and Physiological Diversity of Cortical Nonpyramidal Cells , 1997, The Journal of Neuroscience.

[52]  Jens Hjerling-Leffler,et al.  The Cell-Intrinsic Requirement of Sox6 for Cortical Interneuron Development , 2009, Neuron.

[53]  C. Zorumski,et al.  Neural activity and survival in the developing nervous system , 2000, Molecular Neurobiology.

[54]  Z. Josh Huang,et al.  Robust but delayed thalamocortical activation of dendritic-targeting inhibitory interneurons , 2008, Proceedings of the National Academy of Sciences.

[55]  O. Marín,et al.  Delineation of Multiple Subpallial Progenitor Domains by the Combinatorial Expression of Transcriptional Codes , 2007, The Journal of Neuroscience.

[56]  P. Brunjes,et al.  Unilateral odor deprivation: Early postnatal changes in olfactory bulb cell density and number , 1988, The Journal of comparative neurology.

[57]  P. Somogyi,et al.  Neuronal Diversity and Temporal Dynamics: The Unity of Hippocampal Circuit Operations , 2008, Science.

[58]  O. Marín,et al.  Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. , 1999, Development.

[59]  S. Anderson,et al.  Fate mapping Nkx2.1‐lineage cells in the mouse telencephalon , 2008, The Journal of comparative neurology.

[60]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[61]  T. Kohwi-Shigematsu,et al.  SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes , 2006, Nature Genetics.

[62]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[63]  Yi Zhang,et al.  Mutations in High-Voltage-Activated Calcium Channel Genes Stimulate Low-Voltage-Activated Currents in Mouse Thalamic Relay Neurons , 2002, The Journal of Neuroscience.

[64]  S. Anderson,et al.  Origins of neocortical interneurons in mice , 2011, Developmental neurobiology.

[65]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[66]  O. Marín,et al.  A long, remarkable journey: Tangential migration in the telencephalon , 2001, Nature Reviews Neuroscience.

[67]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[68]  Francesc X. Soriano,et al.  Suppression of the Intrinsic Apoptosis Pathway by Synaptic Activity , 2010, The Journal of Neuroscience.

[69]  M. Scanziani,et al.  Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition , 2001, Science.

[70]  S. Anderson,et al.  Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. , 1999, Cerebral cortex.

[71]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[72]  T. Kohwi-Shigematsu,et al.  An Atypical Homeodomain in SATB1 Promotes Specific Recognition of the Key Structural Element in a Matrix Attachment Region* , 1997, The Journal of Biological Chemistry.

[73]  G. Fishell,et al.  In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain. , 2001, Development.

[74]  G. Miyoshi,et al.  Physiologically Distinct Temporal Cohorts of Cortical Interneurons Arise from Telencephalic Olig2-Expressing Precursors , 2007, The Journal of Neuroscience.