Pairwise Balanced Designs with Prescribed Minimum Dimension

The dimension of a linear space is the maximum positive integer d such that any d of its points generate a proper subspace. For a set K of integers at least two, recall that a pairwise balanced design $\operatorname{PBD}(v,K)$ is a linear space on v points whose lines (or blocks) have sizes belonging to K. We show that, for any prescribed set of sizes K and lower bound d on the dimension, there exists a $\operatorname{PBD}(v,K)$ of dimension at least d for all sufficiently large and numerically admissible v.

[1]  Lynn Margaret Batten,et al.  The theory of finite linear spaces - combinatorics of points and lines , 1993 .

[2]  Lynn Batten,et al.  The Theory of Finite Linear Spaces: Notation index , 1993 .

[3]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory, Ser. A.

[4]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[5]  Alan C. H. Ling,et al.  Linear spaces with small generated subspaces , 2009, J. Comb. Theory, Ser. A.

[6]  Richard M. Wilson,et al.  Decompositions of Edge-Colored Complete Graphs , 2000, J. Comb. Theory, Ser. A.

[7]  Paul Erdös,et al.  On the Maximal Number of Pairwise Orthogonal Latin Squares of a Given Order , 1960, Canadian Journal of Mathematics.

[8]  Anne Delandtsheer,et al.  Dimensional linear spaces , 1995 .

[9]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory A.

[10]  Jiuqiang Liu,et al.  Asymptotic existence theorems for frames and group divisible designs , 2007, J. Comb. Theory, Ser. A.

[11]  Lynn Batten,et al.  The Theory of Finite Linear Spaces by Lynn Margaret Batten , 1993 .

[12]  Luc Teirlinck,et al.  On Steiner Spaces , 1979, J. Comb. Theory, Ser. A.

[13]  Peter Dukes,et al.  Pairwise balanced designs of dimension three , 2015, Australas. J Comb..