Clustering of attributes by projection pursuit for reservoir characterization

From the values of each trace occupying a reservoir interval (or other time segment) on a (flattened) seismic section a set of p attributes can be computed and assigned to, say, the CDP location of the trace. Attributes could, for example, include energy and bandwidth. For a set of N traces, N points in a p-dimensional space are obtained. The ability to determine the clustering of such points in the high-dimensional space then corresponds to recognizing the locations of traces that have similar properties (governed by the attribute values) over the reservoir interval. This ability provides a useful first step in characterizing the reservoir interval.

[1]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[2]  Richard B. Darlington,et al.  Is Kurtosis Really “Peakedness?” , 1970 .

[3]  James E. Dammann,et al.  A Technique for Determining and Coding Subclasses in Pattern Recognition Problems , 1965, IBM J. Res. Dev..

[4]  A. Walden Non-Gaussian reflectivity, entropy, and deconvolution , 1985 .

[5]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[6]  J. Friedman Exploratory Projection Pursuit , 1987 .

[7]  Douglas W. Oldenburg,et al.  Automatic phase correction of common-midpoint stacked data , 1987 .

[8]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[9]  M. C. Jones,et al.  A Remark on Algorithm as 176. Kernel Density Estimation Using the Fast Fourier Transform , 1984 .

[10]  Andrew T. Walden,et al.  SEISMIC CHARACTER MAPPING OVER RESERVOIR INTERVALS1 , 1990 .

[11]  A. D. Gordon,et al.  Interpreting multivariate data , 1982 .

[12]  A. Walden,et al.  PRINCIPLES AND APPLICATION OF MAXIMUM KURTOSIS PHASE ESTIMATION1 , 1988 .

[13]  Ian Dennis Longstaff On Extensions to Fisher's Linear Discriminant Function , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  J. Kruskal TOWARD A PRACTICAL METHOD WHICH HELPS UNCOVER THE STRUCTURE OF A SET OF MULTIVARIATE OBSERVATIONS BY FINDING THE LINEAR TRANSFORMATION WHICH OPTIMIZES A NEW “INDEX OF CONDENSATION” , 1969 .

[15]  S. J. Devlin,et al.  Robust Estimation of Dispersion Matrices and Principal Components , 1981 .

[16]  M. M. Siddiqui Applied Time Series Analysis II , 1984 .

[17]  F. Mosteller,et al.  Understanding robust and exploratory data analysis , 1985 .

[18]  B. Silverman,et al.  Kernel Density Estimation Using the Fast Fourier Transform , 1982 .

[19]  R. Wiggins Minimum entropy deconvolution , 1978 .

[20]  Jane F. Gentleman,et al.  Moving Statistics for Enhanced Scatter Plots , 1978 .

[21]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[22]  Keinosuke Fukunaga,et al.  Application of the Karhunen-Loève Expansion to Feature Selection and Ordering , 1970, IEEE Trans. Computers.

[23]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.