Toward an optimal foundation architecture for optoelectronic computing. Part I. Regularly interconnected device planes.

By systematically examining the tree of possibilities for optoelectronic computing architectures and offering arguments that allow one to prune suboptimal branches of this tree, I come to the conclusion that electronic circuit planes interconnected optically according to regular connection patterns represent an alternative that is reasonably close to the best possible, as defined by physical limitations. Thus I propose that this foundation architecture should provide a basis for future research and development in this area.

[1]  J. Cunningham,et al.  GaAs 850 nm modulators solder-bonded to silicon , 1993, IEEE Photonics Technology Letters.

[2]  H. B. Bakoglu,et al.  Circuits, interconnections, and packaging for VLSI , 1990 .

[3]  John A. Neff,et al.  VCSEL/CMOS smart pixel arrays for free-space optical interconnects , 1996, Proceedings of Massively Parallel Processing Using Optical Interconnections.

[4]  Andrew S. Tanenbaum,et al.  Structured Computer Organization , 1976 .

[5]  Haldun M. Ozaktas A physical approach to communication limits in computation , 1992 .

[6]  R. W. Keyes,et al.  The wire-limited logic chip , 1982 .

[7]  Sing H. Lee,et al.  Architecture of an integrated computer-aided design system for optoelectronics , 1991 .

[8]  M W Haney Pipelined optoelectronic free-space permutation network. , 1992, Optics letters.

[9]  Alexander A. Sawchuk,et al.  Parallel architectures for digital optical cellular image processing , 1994 .

[10]  Joseph W. Goodman,et al.  The Limitations of Interconnections in Providing Communication Between an Array of Points , 1991 .

[11]  Fred R. Beyette,et al.  Optoelectronic parallel processing with surface-emitting lasers and free-space interconnects , 1995 .

[12]  P. Marchand,et al.  Grain-size considerations for optoelectronic multistage interconnection networks. , 1992, Applied optics.

[13]  T. Kurokawa,et al.  Optical interconnection technologies based on vertical-cavity surface-emitting lasers and smart pixels , 1996, Proceedings of Massively Parallel Processing Using Optical Interconnections.

[14]  Sing H. Lee,et al.  Architecture of an integrated computer-aided design system for optoelectronics , 1994 .

[15]  John A. Neff,et al.  Analysis of a three-dimensional computer optical scheme based on bidirectional free-space optical interconnects , 1995 .

[16]  Harry F. Jordan,et al.  Optoelectronic time-of-flight design and the demonstration of an all-optical, stored program, digital computer , 1994 .

[17]  J Jahns,et al.  Crossover networks and their optical implementation. , 1988, Applied optics.

[18]  Haldun M. Ozaktas Levels of Abstraction in Computing Systems and Optical Interconnection Technology , 1998 .

[19]  Joseph W. Goodman,et al.  Comparison of local and global computation and its implications for the role of optical interconnections in future nanoelectronic systems , 1993 .

[20]  A Louri,et al.  Experimental demonstration of the optical multi-mesh hypercube: scaleable interconnection network for multiprocessors and multicomputers. , 1996, Applied optics.

[21]  R.W. Keyes,et al.  Physical limits in digital electronics , 1975, Proceedings of the IEEE.

[22]  H. M. Ozaktas,et al.  Towards an optimal foundation architecture for optoelectronic computing , 1996, Proceedings of Massively Parallel Processing Using Optical Interconnections.

[23]  Sing H. Lee,et al.  Design considerations and algorithms for partitioning opto-electronic multichip modules , 1994, First International Workshop on Massively Parallel Processing Using Optical Interconnections.

[24]  T J Cloonan,et al.  Shuffle-equivalent interconnection topologies based on computer-generated binary-phase gratings. , 1994, Applied optics.

[25]  S C Esener,et al.  Optical transpose interconnection system architectures. , 1993, Optics letters.

[26]  Joseph W. Goodman,et al.  The optimal electromagnetic carrier frequency balancing structural and metrical information densities with respect to heat removal requirements , 1992 .

[27]  R A Athale,et al.  Folded perfect shuffle optical processor. , 1988, Applied optics.

[28]  Charles W. Stirk Cost models of components for free-space optically interconnected systems , 1993 .

[29]  Ashok V. Krishnamoorthy,et al.  Performance comparison between optoelectronic and VLSI multistage interconnection networks , 1991 .

[30]  Haldun M. Ozaktas,et al.  Computer-aided analysis and simulation of complex passive integrated optical circuits of arbitrary rectilinear topology , 1994 .

[31]  D. Kossives,et al.  GaAs MQW modulators integrated with silicon CMOS , 1995, IEEE Photonics Technology Letters.

[32]  Arnold L. Rosenberg,et al.  Three-Dimensional Circuit Layouts , 1984, SIAM J. Comput..

[33]  C C Guest,et al.  Comparison between electrical and free space optical interconnects for fine grain processor arrays based on interconnect density capabilities. , 1989, Applied optics.

[34]  M. Interpretation of the space-bandwidth product as the entropy of distinct connection patterns in multifacet optical interconnection architectures , 1992 .

[35]  S H Lee,et al.  Comparison between optical and electrical interconnects based on power and speed considerations. , 1988, Applied optics.

[36]  Jürgen Jahns,et al.  Imaging with planar optical systems , 1990 .

[37]  Joseph W. Goodman,et al.  Comparison of system size for some optical interconnection architectures and the folded multi-facet architecture , 1991 .

[38]  Arnold L. Rosenberg,et al.  Three-Dimensional VLSI: a case study , 1983, JACM.

[39]  Adolf W. Lohmann Image formation of dilute arrays for optical information processing , 1991 .

[40]  D. Miller,et al.  Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters. , 1989, Optics letters.

[41]  Jack L. Jewell,et al.  Digital optics , 1989, Proc. IEEE.

[42]  T. Worchesky,et al.  Large arrays of spatial light modulators hybridized to silicon integrated circuits. , 1996, Applied optics.

[43]  Ashok V. Krishnamoorthy,et al.  Optically Augmented 3-D Computer: System Technology and Architecture , 1997, J. Parallel Distributed Comput..

[44]  Thomas J. Cloonan Comparative study of optical and electronic interconnection technologies for large asynchronous transfer mode packet switching applications , 1994 .

[45]  Jürgen Jahns,et al.  Planar packaging of free-space optical interconnections , 1994, Proc. IEEE.

[46]  Ashok V. Krishnamoorthy,et al.  Firehose Architectures for Free-Space Optically Interconnected VLSI Circuits , 1997, J. Parallel Distributed Comput..

[47]  D Mendlovic,et al.  Optical-coordinate transformation methods and optical-interconnection architectures. , 1993, Applied optics.

[48]  Nathan Rosenberg,et al.  Exploring the Black Box: Technology, Economics, and History , 1994 .

[49]  Ashok V. Krishnamoorthy,et al.  Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap , 1996 .

[50]  Q W Song,et al.  Generalized perfect shuffle using optical spatial filtering. , 1988, Applied optics.

[51]  Ian Underwood Liquid crystal over silicon spatial light modulators - principles, practice and prospects (Invited Paper) , 1997 .

[52]  David A. B. Miller,et al.  Limit to the Bit-Rate Capacity of Electrical Interconnects from the Aspect Ratio of the System Architecture , 1997, J. Parallel Distributed Comput..

[53]  Volkan H. Ozguz,et al.  Design considerations and algorithms for partitioning optoelectronic multichip modules. , 1995, Applied optics.

[54]  Joseph W. Goodman,et al.  Organization of information flow in computation for efficient utilization of high information flux communication media , 1992 .

[55]  A. Hall Applied Optics. , 2022, Science.

[56]  W Stork,et al.  Optical perfect shuffle. , 1986, Applied optics.

[57]  A W Lohmann,et al.  Globality and speed of optical parallel processors. , 1989, Applied optics.

[58]  J W Goodman,et al.  Implications of interconnection theory for optical digital computing. , 1992, Applied optics.

[59]  T. J. Drabik,et al.  Optoelectronic integrated systems based on free-space interconnects with an arbitrary degree of space variance , 1994, Proc. IEEE.

[60]  K H Brenner,et al.  Optical implementations of the perfect shuffle interconnection. , 1988, Applied optics.

[61]  Joseph W. Goodman,et al.  Effect on scaling of heat removal requirements in three-dimensional systems , 1992 .

[62]  J W Goodman,et al.  Elements of a hybrid interconnection theory. , 1994, Applied optics.

[63]  Karl-Heinz Brenner,et al.  Space-variance in optical computing systems , 1992 .

[64]  Haldun M. Ozaktas,et al.  Paradigms of connectivity for computer circuits and networks , 1992 .

[65]  M R Feldman,et al.  Guided-wave and free-space optical interconnects for parallel-processing systems: a comparison. , 1994, Applied optics.

[66]  M W Haney,et al.  Optically efficient free-space folded perfect shuffle network. , 1991, Applied optics.

[67]  P. Solomon,et al.  A comparison of semiconductor devices for high-speed logic , 1982, Proceedings of the IEEE.

[68]  A. Lohmann What classical optics can do for the digital optical computer. , 1986, Applied optics.

[69]  Joseph W. Goodman,et al.  A three-dimensional optical interconnection architecture with minimal growth rate of system size , 1991 .

[70]  H M Ozaktas,et al.  Toward an optimal foundation architecture for optoelectronic computing. Part II. Physical construction and application platforms. , 1997, Applied optics.

[71]  J. Goodman,et al.  Lower bound for the communication volume required for an optically interconnected array of points , 1990 .

[72]  A Louri,et al.  Feasibility study of a scalable optical interconnection network for massively parallel processing systems. , 1996, Applied optics.

[73]  Anthony L. Lentine,et al.  Free-space digital optical systems , 1994 .

[74]  J. Goodman Optical interconnection for VLSI , 1984 .

[75]  Hugo Thienpont,et al.  Demonstration of parallel optical data input for arrays of PnpN optical thyristors , 1996, Proceedings of Massively Parallel Processing Using Optical Interconnections.

[76]  F.J. Leonberger,et al.  Optical interconnections for VLSI systems , 1984, Proceedings of the IEEE.

[77]  A Louri Optical content-addressable parallel processor: architecture, algorithms, and design concepts. , 1992, Applied optics.

[78]  D Mendlovic,et al.  Multistage optical interconnection architectures with the least possible growth of system size. , 1993, Optics letters.

[79]  J G Llaurado Computing with light. , 1987, International journal of bio-medical computing.

[80]  Andrew S. Tanenbaum,et al.  Structured computer organization; (2nd ed.) , 1984 .

[81]  T J Cloonan,et al.  Five-stage free-space optical switching network with field-effect transistor self-electro-optic-effect-device smart-pixel arrays. , 1994, Applied optics.

[82]  Ahmed Louri,et al.  Three-dimensional optical architecture and data-parallel algorithms for massively parallel computing , 1991, IEEE Micro.