Metal-dielectric metamaterials for guided wave optics applications

We address the experimental validation of the technological feasibility and operation of the metamaterials in a guided wave configuration in the spectral domain around 1.5μm. For our experiments we considered a 2D array of 200×50×50nm gold cut wires placed on the top of a 10μm wide and 200nm thick silicon waveguide. The transmission spectral measurements performed in the spectral range between 1.25 and 1.64μm using an end-fire coupling setup, revealed a marked dip for TE polarized light, corresponding to the cut wires resonance frequency obtained by numerical modeling. No such a dip in transmission was observed for TM polarized light, i.e. when the electric filed is perpendicular to the layers interface and the orientation of the cut wires. The scanning near field optical microscopy experiments (SNOM), performed in the same spectral range, revealed for TE polarized light a strong enhancement of the electric field confined in the region between the ends of the adjacent cut wires. These results confirm the efficient excitation of the cut wires resonance in a guided wave configuration for the TE polarization. The ability for local engineering of the field interaction with the metamaterial layer and thus the control in such a way of the light flow in a guiding slab, paves the way to a novel class of photonic devices.

[1]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[2]  Jin Au Kong,et al.  Robust method to retrieve the constitutive effective parameters of metamaterials. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Naomi J. Halas,et al.  Photodetection with Active Optical Antennas , 2011, Science.

[4]  U. Leonhardt Optical Conformal Mapping , 2006, Science.

[5]  A. de Lustrac,et al.  Metal-dielectric metamaterials for guided optics applications , 2012, Photonics Europe.

[6]  Xiang Zhang,et al.  Plasmon lasers at deep subwavelength scale , 2009, Nature.

[7]  Huanyang Chen,et al.  Design and experimental realization of a broadband transformation media field rotator at microwave frequencies. , 2009, Physical review letters.

[8]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[9]  T. Krauss,et al.  Miniband transmission in a photonic crystal coupled-resonator optical waveguide. , 2001, Optics letters.

[10]  David R. Smith,et al.  Broadband Ground-Plane Cloak , 2009, Science.

[11]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[12]  Marco Rahm,et al.  Experimental and numerical studies of terahertz surface waves on a thin metamaterial film. , 2009, Optics letters.

[13]  S. Bozhevolnyi,et al.  Surface plasmon polariton based modulators and switches operating at telecom wavelengths , 2004 .

[14]  George C. Schatz,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[15]  M. Lipson,et al.  Silicon nanostructure cloak operating at optical frequencies , 2009, 0904.3508.

[16]  Olivier J. F. Martin,et al.  Simulations of hybrid long-range plasmon modes with application to 90° bends , 2007 .

[17]  A. Degiron,et al.  Transformation optics and infrared metamaterials for optical devices , 2011 .

[18]  Maria Kafesaki,et al.  Negative refractive index response of weakly and strongly coupled optical metamaterials , 2009, 0907.1119.

[19]  S. Tretyakov,et al.  Broadband electromagnetic cloaking of long cylindrical objects. , 2009, Physical review letters.

[20]  G. Uhlmann,et al.  Electromagnetic wormholes and virtual magnetic monopoles from metamaterials. , 2007, Physical review letters.

[21]  David R. Smith,et al.  Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations , 2007, 0706.2452.

[22]  Harald Giessen,et al.  Three-dimensional photonic metamaterials at optical frequencies. , 2008, Nature materials.

[23]  Xiangang Luo,et al.  Design of electromagnetic refractor and phase transformer using coordinate transformation theory. , 2008, Optics express.

[24]  Shah Nawaz Burokur,et al.  Waveguide taper engineering using coordinate transformation technology. , 2010, Optics express.

[25]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[26]  Sailing He,et al.  A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. , 2009, Optics express.

[27]  J. Pendry,et al.  Transformation-optical design of adaptive beam bends and beam expanders. , 2008, Optics express.

[28]  G. Lerondel,et al.  Single metafilm effective medium behavior in optical domain: Maxwell–Garnett approximation and beyond , 2011 .

[29]  A. de Lustrac,et al.  Efficient control of a 3D optical mode using a thin sheet of transformation optical medium. , 2010, Optics express.

[30]  Willie J. Padilla,et al.  Electromagnetic characterization of planar metamaterials by oblique angle spectroscopic measurements , 2007 .

[31]  A. Lupu,et al.  Metal-dielectric metamaterials for guided wave silicon photonics. , 2011, Optics express.

[32]  David R. Smith,et al.  Optical design of reflectionless complex media by finite embedded coordinate transformations. , 2007, Physical review letters.

[33]  Vien Van,et al.  Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. , 2010, Optics express.

[34]  Jung Jin Ju,et al.  Low bending loss characteristics of hybrid plasmonic waveguide for flexible optical interconnect. , 2010, Optics express.

[35]  G. Bartal,et al.  An optical cloak made of dielectrics. , 2009, Nature materials.

[36]  Boubacar Kante,et al.  Experimental demonstration of a nonmagnetic metamaterial cloak at microwave frequencies , 2009, 0907.4416.

[37]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[38]  David R. Smith,et al.  Controlling Electromagnetic Fields , 2006, Science.

[39]  J. Huangfu,et al.  Application of coordinate transformation in bent waveguides , 2008 .

[40]  J. Pendry,et al.  Three-Dimensional Invisibility Cloak at Optical Wavelengths , 2010, Science.

[41]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.