Dynamic portfolio optimization: Time decomposition using the Maximum Principle with a scenario approach

We study a dynamic portfolio management problem over a finite horizon with transaction costs and a risk averse objective function. We assume that the uncertainty faced by the investor can be modelled or approximated using discrete probability distributions via a scenario approach. To solve the resulting optimization problem we use stochastic programming techniques; in particular a scenario decomposition approach. To take advantage of the structure of the portfolio problem we propose a further decomposition obtained by means of a discrete version of the Maximum Principle. The result is a double decomposition of the original problem: The first, given by the scenario approach, focuses on the stochastic aspect of the problem while the second, using the discrete Maximum Principle, concerns the dynamics over time. Applying the double decomposition to our portfolio problem yields a simpler and more direct solution approach which we illustrate with examples.

[1]  Stein W. Wallace,et al.  Structural properties of the progressive hedging algorithm , 1991, Ann. Oper. Res..

[2]  Stephen J. Wright Interior point methods for optimal control of discrete time systems , 1993 .

[3]  R. Tyrrell Rockafellar,et al.  Primal-Dual Projected Gradient Algorithms for Extended Linear-Quadratic Programming , 1993, SIAM J. Optim..

[4]  Michael D. Intriligator,et al.  Mathematical optimization and economic theory , 1971 .

[5]  K. Judd Numerical methods in economics , 1998 .

[6]  R. Rockafellar,et al.  Generalized linear-quadratic problems of deterministic and stochastic optimal control in discrete time , 1990 .

[7]  Stein W. Wallace,et al.  Approximate scenario solutions in the progressive hedging algorithm , 1991, Ann. Oper. Res..

[8]  E. Polak,et al.  Theory of optimal control and mathematical programming , 1969 .

[9]  Elio Canestrelli,et al.  Time and nodal decomposition with implicit non-anticipativity constraints in dynamic portfolio optimization , 2005 .

[10]  W. Ziemba,et al.  The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming , 1994 .

[11]  G. Thompson,et al.  Optimal Control Theory: Applications to Management Science and Economics , 2000 .

[12]  Giorgio Consigli,et al.  Dynamic stochastic programmingfor asset-liability management , 1998, Ann. Oper. Res..

[13]  Yurij G. Evtushenko,et al.  Numerical Optimization Techniques , 1985 .

[14]  R. Tyrrell Rockafellar,et al.  Scenarios and Policy Aggregation in Optimization Under Uncertainty , 1991, Math. Oper. Res..

[15]  S. Bradley,et al.  A Dynamic Model for Bond Portfolio Management , 1972 .

[16]  Roger J.-B. Wets,et al.  The aggregation principle in scenario analysis stochastic optimization , 1989 .

[17]  William T. Ziemba,et al.  A Bank Asset and Liability Management Model , 1986, Oper. Res..

[18]  J. Mulvey,et al.  Stochastic network programming for financial planning problems , 1992 .

[19]  George B. Dantzig,et al.  Multi-stage stochastic linear programs for portfolio optimization , 1993, Ann. Oper. Res..

[20]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[21]  John M. Mulvey,et al.  Applying the progressive hedging algorithm to stochastic generalized networks , 1991, Ann. Oper. Res..

[22]  P. Klaassen Solving stochastic programming models for asset/liability management using iterative disaggregation , 1997 .

[23]  D. Bertsekas,et al.  Efficient dynamic programming implementations of Newton's method for unconstrained optimal control problems , 1989 .

[24]  Jitka Dupacová,et al.  Multistage stochastic programs: The state-of-the-art and selected bibliography , 1995, Kybernetika.

[25]  Shlomo Nir,et al.  NATO ASI Series , 1995 .

[26]  Hercules Vladimirou,et al.  Computational assessment of distributed decomposition methods for stochastic linear programs , 1998, Eur. J. Oper. Res..

[27]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[28]  Michael A. H. Dempster,et al.  Dynamic Stochastic Programming for Asset-Liability Management , 1998 .

[29]  Richard B. Vinter,et al.  Feasible Direction Algorithm for Optimal Control Problems with State and Control Constraints: Implementation , 1999 .

[30]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[31]  Yuri Ermoliev,et al.  Numerical Techniques for Stochastic Optimization Problems , 1984 .