Implicit LES Simulations of a Flexible Flapping Wing

A high-order (up to 6th order) Navier-Stokes solver is coupled with a structural solver that decomposes the equations of three-dimensional elasticity into cross-sectional, smalldeformation and spanwise, large-deformation analyses for slender wings. The resulting high-fidelity aeroelastic solver is applied to the investigation of both a rigid and moderately flexible rectangular wing undergoing a pure plunging motion. Comparisons of the computed results demonstrate good agreement with available experimental measurements. A description of the complex interaction between the unsteady aerodynamics and the flexible wing structural dynamics is given. Connections between the results of this analysis and the enhanced aerodynamic loads for the flexible wing are made.

[1]  Pinhas Alpert,et al.  Implicit Filtering in Conjunction with Explicit Filtering , 1981 .

[2]  Yuan-Cheng Fung,et al.  An introduction to the theory of aeroelasticity , 1955 .

[3]  Miguel R. Visbal,et al.  High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation Into FDL3DI , 1998 .

[4]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[5]  Thomas J. Mueller,et al.  Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications , 2001 .

[6]  R. Pletcher,et al.  Computational Fluid Mechanics and Heat Transfer. By D. A ANDERSON, J. C. TANNEHILL and R. H. PLETCHER. Hemisphere, 1984. 599 pp. $39.95. , 1986, Journal of Fluid Mechanics.

[7]  Scott A. Morton,et al.  Implementation of a fully-implicit, aeroelastic Navier-Stokes solver , 1997 .

[8]  Wei Shyy,et al.  Aerodynamics of Low Reynolds Number Flyers: Index , 2007 .

[9]  D. Gaitonde,et al.  Practical aspects of high-order accurate finite-volume schemes for electromagnetics , 1997 .

[10]  Carlos E. S. Cesnik,et al.  Computational fluid-structure interaction of a deformable flapping wing for micro air vehicle applications , 2008 .

[11]  T. Pulliam,et al.  A diagonal form of an implicit approximate-factorization algorithm , 1981 .

[12]  Wei Shyy,et al.  Computational aeroelasticity framework for analyzing flapping wing micro air vehicles , 2008 .

[13]  Peter J. Attar,et al.  Implicit LES Simulations of a Low Reynolds Number Flexible Membrane Wing Airfoil , 2009 .

[14]  Thomas H. Pulliam,et al.  Artificial Dissipation Models for the Euler Equations , 1985 .

[15]  Carlos E. S. Cesnik,et al.  VABS: A New Concept for Composite Rotor Blade Cross-Sectional Modeling , 1995 .

[16]  Miguel R. Visbal,et al.  High-Fidelity Simulation of Transitional Flows Past a Plunging Airfoil , 2009 .

[17]  Miguel R. Visbal,et al.  Further development of a Navier-Stokes solution procedure based on higher-order formulas , 1999 .

[18]  Datta Gaitonde,et al.  High-order accurate methods for unsteady vortical flows on curvilinear meshes , 1998 .

[19]  Carlos E. S. Cesnik,et al.  Cross-sectional analysis of nonhomogeneous anisotropic active slender structures , 2005 .

[20]  R. F. Warming,et al.  An Implicit Factored Scheme for the Compressible Navier-Stokes Equations , 1977 .

[21]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[22]  Philip E. Morgan,et al.  An Implicit LES Approach Based on High-order Compact Differencing and Filtering Schemes (Invited) , 2003 .

[23]  M. Visbal VERY HIGH-ORDER SPATIALLY IMPLICIT SCHEMES FOR COMPUTATIONAL ACOUSTICS ON CURVILINEAR MESHES , 2001 .

[24]  Carlos E. S. Cesnik,et al.  Evaluation of computational algorithms suitable for fluid-structure interactions , 2000 .

[25]  Sam Heathcote,et al.  Effect of Spanwise Flexibility on Flapping Wing Propulsion , 2006 .

[26]  Carlos E. S. Cesnik,et al.  Geometrically Nonlinear Theory of Composite Beams with Deformable Cross Sections , 2008 .

[27]  Dragos Viieru,et al.  Membrane Wing-Based Micro Air Vehicles , 2005 .

[28]  Miguel R. Visbal,et al.  High-Order-Accurate Methods for Complex Unsteady Subsonic Flows , 1999 .