Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment

Abstract. During the fifth phase of the Coupled Model Intercomparison Project (CMIP5) substantial efforts were made to systematically assess the skill of Earth system models. One goal was to check how realistically representative marine biogeochemical tracer distributions could be reproduced by models. In routine assessments model historical hindcasts were compared with available modern biogeochemical observations. However, these assessments considered neither how close modeled biogeochemical reservoirs were to equilibrium nor the sensitivity of model performance to initial conditions or to the spin-up protocols. Here, we explore how the large diversity in spin-up protocols used for marine biogeochemistry in CMIP5 Earth system models (ESMs) contributes to model-to-model differences in the simulated fields. We take advantage of a 500-year spin-up simulation of IPSL-CM5A-LR to quantify the influence of the spin-up protocol on model ability to reproduce relevant data fields. Amplification of biases in selected biogeochemical fields (O2, NO3, Alk-DIC) is assessed as a function of spin-up duration. We demonstrate that a relationship between spin-up duration and assessment metrics emerges from our model results and holds when confronted with a larger ensemble of CMIP5 models. This shows that drift has implications for performance assessment in addition to possibly aliasing estimates of climate change impact. Our study suggests that differences in spin-up protocols could explain a substantial part of model disparities, constituting a source of model-to-model uncertainty. This requires more attention in future model intercomparison exercises in order to provide quantitatively more correct ESM results on marine biogeochemistry and carbon cycle feedbacks.

[1]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[2]  Jean-Marc Molines,et al.  Eddy compensation and controls of the enhanced sea‐to‐air CO2 flux during positive phases of the Southern Annular Mode , 2013 .

[3]  Stephen Cusack,et al.  Improved Surface Temperature Prediction for the Coming Decade from a Global Climate Model , 2007, Science.

[4]  D. Wolf-Gladrow,et al.  CO2 in Seawater: Equilibrium, Kinetics, Isotopes , 2001 .

[5]  C. Bretherton,et al.  The Effective Number of Spatial Degrees of Freedom of a Time-Varying Field , 1999 .

[6]  P. Cox,et al.  Emergent constraints on climate‐carbon cycle feedbacks in the CMIP5 Earth system models , 2014 .

[7]  E. Guilyardi,et al.  Reconstructing the subsurface ocean decadal variability using surface nudging in a perfect model framework , 2014, Climate Dynamics.

[8]  Andreas Oschlies,et al.  A model-based assessment of the TrOCA approach for estimating anthropogenic carbon in the ocean , 2010 .

[9]  J. Sarmiento,et al.  Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and productivity , 2004 .

[10]  Aurélien Ribes,et al.  Detecting the anthropogenic influences on recent changes in ocean carbon uptake , 2014 .

[11]  Inez Y. Fung,et al.  Contribution to the atmospheric mineral aerosol load from land surface modification , 1995 .

[12]  M. Gehlen,et al.  The response of marine carbon and nutrient cycles to ocean acidification: Large uncertainties related to phytoplankton physiological assumptions , 2011 .

[13]  T. Ilyina,et al.  Ocean biogeochemistry in the warm climate of the late Paleocene , 2014 .

[14]  J. Galloway,et al.  An Earth-system perspective of the global nitrogen cycle , 2008, Nature.

[15]  O. Aumont,et al.  Riverine‐driven interhemispheric transport of carbon , 2001 .

[16]  H. Tsujino,et al.  Basic performance of a new earth system model of the Meteorological Research Institute (MRI-ESM1) , 2013 .

[17]  J. Fyfe,et al.  Ocean carbon uptake and storage influenced by wind bias in global climate models , 2012 .

[18]  Stéphane Blain,et al.  An ecosystem model of the global ocean including Fe, Si, P colimitations , 2003 .

[19]  Scott C. Doney,et al.  Global ocean storage of anthropogenic carbon , 2012 .

[20]  Ronald,et al.  GFDL’s ESM2 Global Coupled Climate–Carbon Earth System Models. Part I: Physical Formulation and Baseline Simulation Characteristics , 2012 .

[21]  F. Joos,et al.  Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk , 2014 .

[22]  K. Denman,et al.  Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases , 2011 .

[23]  Nathaniel L. Bindoff,et al.  Detecting an external influence on recent changes in oceanic oxygen using an optimal fingerprinting method , 2012 .

[24]  S. Khatiwala,et al.  Accelerated simulation of passive tracers in ocean circulation models , 2003 .

[25]  Reto Knutti,et al.  Climate model genealogy: Generation CMIP5 and how we got there , 2013 .

[26]  K. Hasselmann,et al.  Transport and storage of CO2 in the ocean ——an inorganic ocean-circulation carbon cycle model , 1987 .

[27]  John P. Krasting,et al.  Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models , 2015 .

[28]  F. Joos,et al.  Regional Impacts of Climate Change and Atmospheric CO2on Future Ocean Carbon Uptake: A Multimodel Linear Feedback Analysis , 2011 .

[29]  Scott C. Doney,et al.  Evaluating global ocean carbon models: The importance of realistic physics , 2004 .

[30]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[31]  Christoph Heinze,et al.  Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM) , 2012 .

[32]  Michele Scardi,et al.  Assessing the Uncertainties of Model Estimates of Primary Productivity in the Tropical Pacific Ocean Revised , 2008 .

[33]  L. Bopp,et al.  Future Arctic Ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms , 2013, Global Biogeochemical Cycles.

[34]  C. Duarte,et al.  Footprints of climate change in the Arctic marine ecosystem , 2011 .

[35]  F. Joos,et al.  Carbon sources and sinks from an Ensemble Kalman Filter ocean data assimilation , 2010 .

[36]  C. Jones,et al.  Development and evaluation of an Earth-System model - HadGEM2 , 2011 .

[37]  N. Swart The Southern Hemisphere Westerlies and the ocean carbon cycle: the influence of climate model wind biases and human induced changes. , 2013 .

[38]  P. Cox,et al.  Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability , 2013, Nature.

[39]  J. Duplessy,et al.  How fast did the ocean—atmosphere system run during the last deglaciation? , 1991 .

[40]  M. Maqueda,et al.  Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics , 1997 .

[41]  J. Sarmiento,et al.  Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems , 2013 .

[42]  D. Bianchi,et al.  Oxygen minimum zones in the tropical Pacific across CMIP5 models: mean state differences and climate change trends , 2015 .

[43]  T. Takemura,et al.  Geoscientific Model Development MIROC-ESM 2010 : model description and basic results of CMIP 5-20 c 3 m experiments , 2011 .

[44]  F. Joos,et al.  Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios , 2015, Science.

[45]  E. Maier‐Reimer,et al.  Geochemical cycles in an Ocean General Circulation Model , 1993 .

[46]  R. Moss,et al.  Climate model intercomparisons: Preparing for the next phase , 2014 .

[47]  L. Bopp,et al.  Globalizing results from ocean in situ iron fertilization studies , 2006 .

[48]  M. Gehlen,et al.  Skill assessment of three earth system models with common marine biogeochemistry , 2013, Climate Dynamics.

[49]  D. Waugh,et al.  An estimate of anthropogenic CO2 inventory from decadal changes in oceanic carbon content , 2007, Proceedings of the National Academy of Sciences.

[50]  S. Phipps,et al.  Climate drift in the CMIP3 models , 2012 .

[51]  Keith B. Rodgers,et al.  Emergence of multiple ocean ecosystem drivers in a large ensemble suite with an Earth system model , 2014 .

[52]  C. Stow,et al.  Skill Assessment for Coupled Biological/Physical Models of Marine Systems. , 2009, Journal of marine systems : journal of the European Association of Marine Sciences and Techniques.

[53]  R. Wanninkhof Relationship between wind speed and gas exchange over the ocean , 1992 .

[54]  Taro Takahashi,et al.  Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data , 2009 .

[55]  G. Meehl,et al.  Decadal climate prediction: an update from the trenches , 2014 .

[56]  Samar Khatiwala,et al.  Fast spin up of Ocean biogeochemical models using matrix-free Newton–Krylov , 2008 .

[57]  C. Deutsch,et al.  Variability of the oxygen minimum zone in the tropical North Pacific during the late twentieth century , 2013 .

[58]  V. Brovkin,et al.  Ocean methane hydrates as a slow tipping point in the global carbon cycle , 2009, Proceedings of the National Academy of Sciences.

[59]  Taro Takahashi,et al.  Redfield ratio based on chemical data from isopycnal surfaces , 1985 .

[60]  G. Madec,et al.  A degradation approach to accelerate simulations to steady-state in a 3-D tracer transport model of the global ocean , 1998 .

[61]  Scott C. Doney,et al.  Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model: GLOBAL ECOSYSTEM-BIOGEOCHEMICAL MODEL , 2004 .

[62]  K. Bryan Accelerating the Convergence to Equilibrium of Ocean-Climate Models , 1984 .

[63]  M. Lévy,et al.  Grid degradation of submesoscale resolving ocean models: Benefits for offline passive tracer transport , 2012 .

[64]  P. Cox,et al.  Evaluating the Land and Ocean Components of the Global Carbon Cycle in the CMIP5 Earth System Models , 2013 .

[65]  Li Zhang,et al.  Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century , 2013 .

[66]  H. Douville,et al.  Development and evaluation of CNRM Earth system model – CNRM-ESM1 , 2015 .

[67]  G. Meehl,et al.  Decadal prediction: Can it be skillful? , 2009 .

[68]  L. Kornblueh,et al.  Advancing decadal-scale climate prediction in the North Atlantic sector , 2008, Nature.

[69]  D. Turner,et al.  The Biogeochemistry of Iron in Seawater , 2001 .

[70]  Carl Wunsch,et al.  Practical global oceanic state estimation , 2007 .

[71]  Uta Dresdner Co2 In Seawater Equilibrium Kinetics Isotopes , 2016 .

[72]  C. Jones,et al.  Interactive comment on “ Development and evaluation of an Earth-system model – HadGEM 2 ” , 2011 .

[73]  M. Holland,et al.  Constraining projections of summer Arctic sea ice , 2012 .

[74]  K. Tachiiri,et al.  Modeling in Earth system science up to and beyond IPCC AR5 , 2014, Progress in Earth and Planetary Science.

[75]  W. Hobbs,et al.  An Energy Conservation Analysis of Ocean Drift in the CMIP5 Global Coupled Models , 2016 .

[76]  Simon Read,et al.  ESMValTool (v1.0) – a community diagnostic and performance metrics tool for routine evaluation of Earth system models in CMIP , 2015 .

[77]  M. Levasseur,et al.  Ocean Biogeochemical Dynamics , 2007 .

[78]  L. Bopp,et al.  Natural variability of CO2 and O2 fluxes: What can we learn from centuries‐long climate models simulations? , 2015 .

[79]  P. Webster,et al.  Evaluation of short‐term climate change prediction in multi‐model CMIP5 decadal hindcasts , 2012 .

[80]  Sallie W. Chisholm,et al.  Emergent Biogeography of Microbial Communities in a Model Ocean , 2007, Science.

[81]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[82]  Francisco P. Chavez,et al.  Continental-shelf sediment as a primary source of iron for coastal phytoplankton , 1999, Nature.

[83]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[84]  E. Guilyardi,et al.  Initialisation and predictability of the AMOC over the last 50 years in a climate model , 2013, Climate Dynamics.

[85]  Thomas R. Anderson,et al.  MEDUSA-2.0: an intermediate complexity biogeochemical model of the marine carbon cycle for climate change and ocean acidification studies , 2013 .

[86]  Steven J. Phipps,et al.  Climate drift in the CMIP3 models , 2012 .

[87]  Scott C. Doney,et al.  Assessment of skill and portability in regional marine biogeochemical models : Role of multiple planktonic groups , 2007 .

[88]  Andrea Alessandri,et al.  Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario , 2011 .

[89]  Hongmei Li,et al.  Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI‐Earth system model in different CMIP5 experimental realizations , 2013 .

[90]  A. Oschlies,et al.  MOPS-1 . 0 : towards a model for the regulation of the global oceanic nitrogen budget by marine biogeochemical processes , 2015 .

[91]  Global Ocean Storage of Anthropogenic Carbon (GOSAC) , 2002 .

[92]  L. Bopp,et al.  Role of mode and intermediate waters in future ocean acidification: Analysis of CMIP5 models , 2013 .

[93]  C. Wunsch,et al.  How long to oceanic tracer and proxy equilibrium , 2008 .

[94]  Watson W. Gregg,et al.  Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation , 2013 .

[95]  Daniele Iudicone,et al.  Water Mass Analysis of Effect of Climate Change on Air–Sea CO2Fluxes: The Southern Ocean , 2012 .

[96]  Pierre Friedlingstein,et al.  Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models , 2015 .

[97]  F. Joos,et al.  Oxygen and indicators of stress for marine life in multi-model global warming projections , 2012 .

[98]  Nicolas Gruber,et al.  Warming up, turning sour, losing breath: ocean biogeochemistry under global change , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[99]  S. Doney,et al.  Biological ramifications of climate-change-mediated oceanic multi-stressors , 2015 .

[100]  C. Heinze,et al.  Nonlinearity of Ocean Carbon Cycle Feedbacks in CMIP5 Earth System Models , 2014 .

[101]  K.,et al.  Carbon–Concentration and Carbon–Climate Feedbacks in CMIP5 Earth System Models , 2012 .

[102]  Christoph Heinze,et al.  A global oceanic sediment model for long‐term climate studies , 1999 .

[103]  S. Doney,et al.  An intermediate complexity marine ecosystem model for the global domain , 2001 .

[104]  J. Toggweiler,et al.  Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2 , 2008 .

[105]  David L. Williamson,et al.  Evaluating Parameterizations in General Circulation Models: Climate Simulation Meets Weather Prediction , 2004 .

[106]  Claude Roy,et al.  Climate Variability, Fish, and Fisheries , 2006 .

[107]  S. Levitus,et al.  Distribution of nitrate, phosphate and silicate in the world oceans , 1993 .

[108]  S. Zaehle,et al.  Challenges and opportunities to reduce uncertainty in projections of future atmospheric CO 2 : a combined marine and terrestrial biosphere perspective , 2014 .

[109]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[110]  H. Douville,et al.  Development and evaluation of CNRM Earth system model – CNRM-ESM1 , 2015 .

[111]  Corinne Le Quéré,et al.  Drivers and uncertainties of future global marine primary production in marine ecosystem models , 2015 .

[112]  I. C. Prentice,et al.  A dynamic global vegetation model for studies of the coupled atmosphere‐biosphere system , 2005 .

[113]  D. R. Johnson,et al.  The World Ocean Database , 2013, Data Sci. J..

[114]  Kuma Kenshi BIOGEOCHEMISTRY OF IRON IN SEAWATER , 2004 .

[115]  C. Timmreck,et al.  Sensitivity of a coupled climate-carbon cycle model to large volcanic eruptions during the last millennium , 2010 .

[116]  Jaclyn N. Brown,et al.  Climate Drift in the CMIP5 Models , 2013 .

[117]  Wolfgang Ludwig,et al.  Predicting the oceanic input of organic carbon by continental erosion , 1996 .

[118]  Vassily Lyutsarev,et al.  Changing How Earth System Modeling is Done to Provide More Useful Information for Decision Making, Science, and Society , 2014 .

[119]  Taka Ito,et al.  Anthropogenic carbon dioxide transport in the Southern Ocean driven by Ekman flow , 2010, Nature.

[120]  Christoph Heinze,et al.  Long-term surface pCO2 trends from observations and models , 2014 .

[121]  Scott C. Doney,et al.  Projected 21st century decrease in marine productivity: a multi-model analysis , 2009 .

[122]  E. Volodin,et al.  Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations , 2010 .

[123]  Nicolas Gruber,et al.  Ocean deoxygenation in a warming world. , 2010, Annual review of marine science.

[124]  Ronald J. Stouffer,et al.  A method for obtaining pre-twentieth century initial conditions for use in climate change studies , 2004 .

[125]  Scott C. Doney,et al.  The Growing Human Footprint on Coastal and Open-Ocean Biogeochemistry , 2010, Science.

[126]  C. Talandier,et al.  On the evolution of the oceanic component of the IPSL climate models from CMIP3 to CMIP5 : a mean state comparison , 2013 .

[127]  R. Schnur,et al.  Ocean dynamics determine the response of oceanic CO2 uptake to climate change , 2008 .

[128]  Pierre Friedlingstein,et al.  Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks , 2014 .

[129]  Scott C. Doney,et al.  Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity , 2010 .

[130]  A. Romanou,et al.  Natural ocean carbon cycle sensitivity to parameterizations of the recycling in a climate model , 2013 .

[131]  S. Bony,et al.  Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[132]  K. Lindsay,et al.  Inverse estimates of the oceanic sources and sinks of natural CO2 and the implied oceanic carbon transport , 2007 .

[133]  Johanna Baehr,et al.  Multiyear Prediction of Monthly Mean Atlantic Meridional Overturning Circulation at 26.5°N , 2012, Science.

[134]  Timothy P. Boyer,et al.  World Ocean Atlas 1994. Volume 4. Temperature , 1994 .

[135]  Kenneth A. Rose,et al.  Skill assessment of spatial maps for oceanographic modeling , 2009 .

[136]  Nancy Knowlton,et al.  Climate change impacts on marine ecosystems. , 2012, Annual review of marine science.

[137]  C. Völker,et al.  Towards accounting for dissolved iron speciation in global ocean models , 2011 .

[138]  J. Nycander,et al.  Source‐related variables for the description of the oceanic carbon system , 2014 .

[139]  L. Bopp,et al.  Contribution of tropical cyclones to the air‐sea CO2 flux: A global view , 2012 .

[140]  Peter E. Thornton,et al.  Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC) , 2014 .

[141]  F. Joos,et al.  Time of emergence of trends in ocean biogeochemistry , 2014 .