A Local Discriminative Model for Background Subtraction

Conventional background subtraction techniques that update a background model online have difficulties with correctly segmenting foreground objects if sudden brightness changes occur. Other methods that learn a global scene model offline suffer from projection errors. To overcome these problems, we present a different approach that is localand discriminative, i.e. for each pixel a classifier is trained to decide whether the pixel belongs to the background or foreground. Such a model requires significantly less tuning effort and shows a better robustness, as we will demonstrate in quantitative experiments on self-created and standard benchmarks. Finally, segmentation is improved significantly by integrating the probabilistic evidence provided by the local classifiers with a graph cut segmentation algorithm.

[1]  H. Grabner,et al.  Autonomous Learning of a Robust Background Model for Change Detection ∗ , 2006 .

[2]  Olivier Bernier,et al.  Real Time Illumination Invariant Background Subtraction Using Local Kernel Histograms , 2006, BMVC.

[3]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[4]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[5]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[6]  Qi Tian,et al.  Foreground object detection in changing background based on color co-occurrence statistics , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[7]  David G. Stork,et al.  Pattern Classification , 1973 .

[8]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Irfan A. Essa,et al.  Tree-based Classifiers for Bilayer Video Segmentation , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[11]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[12]  Harry Shum,et al.  Background Cut , 2006, ECCV.

[13]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Chandrika Kamath,et al.  Robust Background Subtraction with Foreground Validation for Urban Traffic Video , 2005, EURASIP J. Adv. Signal Process..

[15]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Bohyung Han,et al.  SEQUENTIAL KERNEL DENSITY APPROXIMATION THROUGH MODE PROPAGATION: APPLICATIONS TO BACKGROUND MODELING , 2004 .

[17]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[18]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .

[19]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Borko Furht,et al.  Neural Network Approach to Background Modeling for Video Object Segmentation , 2007, IEEE Transactions on Neural Networks.