Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization.

Microarray profiling of gene expression is a powerful tool for discovery, but the ability to manage and compare the resulting data can be problematic. Biological, experimental, and technical variations between studies of the same phenotype/phenomena create substantial differences in results. The application of conventional meta-analysis to raw microarray data is complicated by differences in the type of microarray used, gene nomenclatures, species, and analytical methods. An alternative approach to combining multiple microarray studies is to compare the published gene lists which result from the investigators' analyses of the raw data, as implemented in Lists of Lists Annotated (LOLA: www.lola.gwu.edu) and L2L (depts.washington.edu/l2l/). The present review considers both the potential value and the limitations of databasing and enabling the comparison of results from different microarray studies. Further, a major impediment to cross-study comparisons is the absence of a standard for reporting microarray study results. We propose a reporting standard: standard microarray results template (SMART), which will facilitate the integration of microarray studies.

[1]  Richard A. Young,et al.  Insights into host responses against pathogens from transcriptional profiling , 2005, Nature Reviews Microbiology.

[2]  Kathleen F. Kerr,et al.  Standardizing global gene expression analysis between laboratories and across platforms , 2005, Nature Methods.

[3]  R. Verhaak,et al.  Prognostically useful gene-expression profiles in acute myeloid leukemia. , 2004, The New England journal of medicine.

[4]  I. Kohane,et al.  Gene regulation and DNA damage in the ageing human brain , 2004, Nature.

[5]  John D. Storey,et al.  A network-based analysis of systemic inflammation in humans , 2005, Nature.

[6]  Helen E. Parkinson,et al.  ArrayExpress—a public database of microarray experiments and gene expression profiles , 2006, Nucleic Acids Res..

[7]  Susumu Goto,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 2000, Nucleic Acids Res..

[8]  Kiran Kamath,et al.  Gene Aging Nexus: a web database and data mining platform for microarray data on aging , 2006, Nucleic Acids Res..

[9]  Chris F. Taylor,et al.  The MGED Ontology: a resource for semantics-based description of microarray experiments , 2006, Bioinform..

[10]  Ola Larsson,et al.  Lack of correct data format and comparability limits future integrative microarray research , 2006, Nature Biotechnology.

[11]  Gavin Sherlock,et al.  Of fish and chips , 2005, Nature Methods.

[12]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[13]  Hanlee P. Ji,et al.  The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. , 2006, Nature biotechnology.

[14]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[15]  R. Tibshirani,et al.  Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. , 2004, The New England journal of medicine.

[16]  Leming Shi,et al.  Using RNA sample titrations to assess microarray platform performance and normalization techniques , 2006, Nature Biotechnology.

[17]  Bryan Frank,et al.  Independence and reproducibility across microarray platforms , 2005, Nature Methods.

[18]  M. Severgnini,et al.  Strategies for comparing gene expression profiles from different microarray platforms: application to a case-control experiment. , 2006, Analytical biochemistry.

[19]  Sergio Contrino,et al.  ArrayExpress—a public repository for microarray gene expression data at the EBI , 2004, Nucleic Acids Res..

[20]  John Quackenbush,et al.  Multiple-laboratory comparison of microarray platforms , 2005, Nature Methods.

[21]  Claes Wahlestedt,et al.  The expression signature of in vitro senescence resembles mouse but not human aging , 2005, Genome Biology.

[22]  Megan K. Mulligan,et al.  Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Liliana Florea,et al.  List of lists-annotated (LOLA): a database for annotation and comparison of published microarray gene lists. , 2005, Gene.

[24]  Catalin C. Barbacioru,et al.  Evaluation of DNA microarray results with quantitative gene expression platforms , 2006, Nature Biotechnology.

[25]  Paul T. Spellman,et al.  A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB , 2006, BMC Bioinformatics.

[26]  A. Weiner,et al.  Software L 2 L : a simple tool for discovering the hidden significance in microarray expression data , 2005 .

[27]  John T. Dimos,et al.  A Stem Cell Molecular Signature , 2002, Science.

[28]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[29]  Cornelia I Bargmann,et al.  Comparing genomic expression patterns across species identifies shared transcriptional profile in aging , 2004, Nature Genetics.

[30]  D. Melton,et al.  "Stemness": Transcriptional Profiling of Embryonic and Adult Stem Cells , 2002, Science.

[31]  Rickard Sandberg,et al.  Comparative microarray analysis. , 2006, Omics : a journal of integrative biology.

[32]  R. Lempicki,et al.  Evaluation of gene expression measurements from commercial microarray platforms. , 2003, Nucleic acids research.

[33]  A. Weiner,et al.  Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Patrick Cahan,et al.  Genomic profiling of acquired resistance to apoptosis in cells derived from human atherosclerotic lesions: potential role of STATs, cyclinD1, BAD, and Bcl-XL. , 2005, Journal of molecular and cellular cardiology.

[35]  Alvis Brazma,et al.  MGED standards: work in progress. , 2006, Omics : a journal of integrative biology.

[36]  M. Cybulsky,et al.  High-level expression of Egr-1 and Egr-1-inducible genes in mouse and human atherosclerosis. , 2000, The Journal of clinical investigation.

[37]  Philip M. Long,et al.  Comment on " 'Stemness': Transcriptional Profiling of Embryonic and Adult Stem Cells" and "A Stem Cell Molecular Signature" (I) , 2003, Science.