Structural colors in nature: the role of regularity and irregularity in the structure.

Coloring in nature mostly comes from the inherent colors of materials, but it sometimes has a purely physical origin, such as diffraction or interference of light. The latter, called structural color or iridescence, has long been a problem of scientific interest. Recently, structural colors have attracted great interest because their applications have been rapidly progressing in many fields related to vision, such as the paint, automobile, cosmetics, and textile industries. As the research progresses, however, it has become clear that these colors are due to the presence of surprisingly minute microstructures, which are hardly attainable even by ultramodern nanotechnology. Fundamentally, most of the structural colors originate from basic optical processes represented by thin-film interference, multilayer interference, a diffraction grating effect, photonic crystals, light scattering, and so on. However, to enhance the perception of the eyes, natural creatures have produced various designs, in the course of evolution, to fulfill simultaneously high reflectivity in a specific wavelength range and the generation of diffusive light in a wide angular range. At a glance, these two characteristics seem to contradict each other in the usual optical sense, but these seemingly conflicting requirements are realized by combining appropriate amounts of regularity and irregularity of the structure. In this Review, we first explain the fundamental optical properties underlying the structural colors, and then survey these mysteries of nature from the viewpoint of regularity and irregularity of the structure. Finally, we propose a general principle of structural colors based on structural hierarchy and show their up-to-date applications.

[1]  Akira Saito,et al.  Reproduction of the Morpho butterfly's blue: arbitration of contradicting factors , 2004, SPIE Optics + Photonics.

[2]  Shuichi Kinoshita,et al.  Wavelength–selective and anisotropic light–diffusing scale on the wing of the Morpho butterfly , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  W. Lippert,et al.  Über lamellare feinstrukturen bei den schillerschuppen der schmetterlinge vom urania- und morpho-typ , 2004, Zeitschrift für Morphologie und Ökologie der Tiere.

[4]  Takayuki Hoshino,et al.  Brilliant Blue Observation from a Morpho-Butterfly-Scale Quasi-Structure , 2004 .

[5]  E. Rutschke Die submikroskopische Struktur schillernder Federn von Entenvögeln , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[6]  W. J. Schmidt,et al.  Über das schillernde Federmelanin bei Heliangelus und Lophophorus , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[7]  Andrew R. Parker,et al.  Structural colour: Opal analogue discovered in a weevil , 2003, Nature.

[8]  J. Zi,et al.  Coloration strategies in peacock feathers , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Sambles,et al.  Photonic structures in biology , 2003, Nature.

[10]  Rodolfo H. Torres,et al.  Structural colouration of avian skin: convergent evolution of coherently scattering dermal collagen arrays , 2003, Journal of Experimental Biology.

[11]  A. Yoshida Antireflection of the Butterfly and Moth Wings through Microstructure , 2002 .

[12]  Yasuharu Takaku,et al.  The Origin of the Iridescent Colors in Coleopteran Elytron , 2002 .

[13]  Shuichi Kinoshita,et al.  Photophysics of Structural Color in the Morpho Butterflies , 2002 .

[14]  Shuichi Kinoshita,et al.  Effect of Macroscopic Structure in Iridescent Color of the Peacock Feathers , 2002 .

[15]  S. Kinoshita,et al.  Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  S. Kinoshita,et al.  Mechanisms of Structural Color in Nature , 2002 .

[17]  A. Parker,et al.  The Sea Mouse and the Photonic Crystal , 2001 .

[18]  Kazuaki Sakoda,et al.  Optical Properties of Photonic Crystals , 2001 .

[19]  R. Sambles,et al.  Sculpted-multilayer optical effects in two species of Papilio butterfly. , 2001, Applied optics.

[20]  A. Parker,et al.  Aphrodite's iridescence , 2001 .

[21]  Michael F. Land Eyes with mirror optics , 2000 .

[22]  Andrew R. Parker,et al.  515 million years of structural colour , 2000 .

[23]  J. R. Sambles,et al.  Structural colour: Colour mixing in wing scales of a butterfly , 2000, Nature.

[24]  R. Wootton,et al.  Quantified interference and diffraction in single Morpho butterfly scales , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  Rodolfo H. Torres,et al.  Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[26]  A. Parker LIGHT-REFLECTION STRATEGIES , 1999 .

[27]  Rodolfo H. Torres,et al.  Coherent light scattering by blue feather barbs , 1998, Nature.

[28]  P. Wong,et al.  Effects of a butterfly scale microstructure on the iridescent color observed at different angles. , 1998, Applied optics.

[29]  Akihiro Yoshida,et al.  Antireflective Nanoprotuberance Array in the Transparent Wing of a Hawkmoth, Cephonodes hylas , 1997 .

[30]  David W. Lee Iridescent blue plants , 1997 .

[31]  Akihiro Yoshida,et al.  Nanoprotuberance Array in the Transparent Wing of a Hawkmoth, Cephonodes hylas , 1996 .

[32]  Makio Akimoto,et al.  Microstructures and Optical Properties of Scales of Butterfly Wings , 1996 .

[33]  H. Ghiradella,et al.  Structure of butterfly scales: Patterning in an insect cuticle , 1994, Microscopy research and technique.

[34]  H. Nagaishi,et al.  Ultrastructure of the motile iridophores of the neon tetra , 1992 .

[35]  H. Ghiradella Light and color on the wing: structural colors in butterflies and moths. , 1991, Applied optics.

[36]  H. Ghiradella,et al.  Structure and development of iridescent butterfly scales: Lattices and laminae , 1989, Journal of morphology.

[37]  R. Steinbrecht,et al.  Cuticular interference reflectors in the golden pupae of danaine butterflies , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[38]  H. Ghiradella Structure and Development of Iridescent Lepidopteran Scales: the Papilionidae as a Showcase Family , 1985 .

[39]  R A Steinbrecht,et al.  Fine structure and development of the silver and golden cuticle in butterfly pupae. , 1985, Tissue & cell.

[40]  H. Ghiradella,et al.  Structure of Iridescent Lepidopteran Scales: Variations on Several Themes , 1984 .

[41]  Michael F. Land,et al.  Animal Eyes with Mirror Optics , 1978 .

[42]  A. C. Neville,et al.  Metallic gold and silver colours in some insect cuticles , 1977 .

[43]  H. Ghiradella,et al.  Development of butterfly scales. II. Struts, lattices and surface tension , 1976, Journal of morphology.

[44]  J. Huxley,et al.  The coloration of Papilio zalmoxis and P. antimachus, and the discovery of Tyndall blue in butterflies , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[45]  Helen Ghiradella Development of ultraviolet‐reflecting butterfly scales: How to make an interference filter , 1974, Journal of morphology.

[46]  M F Land,et al.  The physics and biology of animal reflectors. , 1972, Progress in biophysics and molecular biology.

[47]  M F Land,et al.  Mechanism of reflexion in silvery layers of fish and cephalopods , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[48]  Eric Denton,et al.  Reflectors in Fishes , 1971 .

[49]  S. Caveney,et al.  SCARABAEID BEETLE EXOCUTICLE AS AN OPTICAL ANALOGUE OF CHOLESTERIC LIQUID CRYSTALS , 1969, Biological reviews of the Cambridge Philosophical Society.

[50]  A R Moller,et al.  Modification of specular reflexion and light transmission by biological surface structures , 1968, Quarterly Reviews of Biophysics.

[51]  A. Huxley,et al.  A Theoretical Treatment of the Reflexion of Light by Multilayer Structures , 1968 .

[52]  Susan Goldhor,et al.  Micrographia , 1963, The Yale Journal of Biology and Medicine.

[53]  E. H. Linfoot Principles of Optics , 1961 .

[54]  C. H. Greenewalt,et al.  Iridescent Colors of Hummingbird Feathers , 1960 .

[55]  A. Richards,et al.  An Electron Microscope Study of Some Structural Colors of Insects , 1942 .

[56]  C. W. Mason,et al.  Structural Colors in Insects. II , 1926 .

[57]  Ernest Merritt,et al.  A Spectrophotometric Study of Certain Cases of Structural Color1 , 1925 .

[58]  L. Rayleigh,et al.  Studies of iridescent colour, and the structure producing it. IV.—Iridescent beetles , 1923 .

[59]  C. W. Mason,et al.  Structural Colors in Feathers. II , 1922 .

[60]  Lord Rayleigh,et al.  VII. On the optical character of some brilliant animal colours , 1919 .

[61]  Lord Rayleigh,et al.  On the Reflection of Light from a Regularly Stratified Medium , 1917 .

[62]  Albert A. Michelson,et al.  LXI. On metallic colouring in birds and insects , 1911 .