Epstein-Barr virus: adaptation to a life within the immune system.

[1]  F. Khanim,et al.  HLA A2.1-restricted cytotoxic T cells recognizing a range of Epstein-Barr virus isolates through a defined epitope in latent membrane protein LMP2 , 1993, Journal of virology.

[2]  A. Rickinson,et al.  Different HLA-B27 subtypes present the same immunodominant Epstein-Barr virus peptide , 1993, The Journal of experimental medicine.

[3]  M. Masucci,et al.  HLA-A11 epitope loss isolates of Epstein-Barr virus from a highly A11+ population. , 1993, Science.

[4]  E. Kieff,et al.  Epstein-Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation , 1993, Journal of virology.

[5]  M. Masucci,et al.  Multiple HLA A11-restricted cytotoxic T-lymphocyte epitopes of different immunogenicities in the Epstein-Barr virus-encoded nuclear antigen 4 , 1993, Journal of virology.

[6]  J. Banchereau Epstein-Barr virus transformation induces B lymphocytes to produce human interleukin 10 , 1993, The Journal of experimental medicine.

[7]  C. Sample,et al.  The Epstein-Barr virus nuclear protein 1 promoter active in type I latency is autoregulated , 1992, Journal of virology.

[8]  E. Kieff,et al.  Identification of target antigens for the human cytotoxic T cell response to Epstein-Barr virus (EBV): implications for the immune control of EBV-positive malignancies , 1992, The Journal of experimental medicine.

[9]  E. Kieff,et al.  Localization of Epstein-Barr virus cytotoxic T cell epitopes using recombinant vaccinia: implications for vaccine development , 1992, The Journal of experimental medicine.

[10]  A. Rickinson,et al.  Three pathways of Epstein-Barr virus gene activation from EBNA1-positive latency in B lymphocytes , 1992, Journal of virology.

[11]  E. Kieff,et al.  The Epstein-Barr virus nuclear protein encoded by the leader of the EBNA RNAs is important in B-lymphocyte transformation , 1991, Journal of virology.

[12]  I. Maclennan,et al.  Germinal center cells express bcl‐2 protein after activation by signals which prevent their entry into apoptosis , 1991, European journal of immunology.

[13]  G. Winberg,et al.  The epstein‐barr‐virus‐encoded membrane protein LMP but not the nuclear antigen EBNA‐1 induces rejection of transfected murine mammary carcinoma cells , 1991, International journal of cancer.

[14]  E. Kieff,et al.  Induction of bcl-2 expression by epstein-barr virus latent membrane protein 1 protects infected B cells from programmed cell death , 1991, Cell.

[15]  Gwyn T. Williams Programmed cell death: Apoptosis and oncogenesis , 1991, Cell.

[16]  G. Lenoir,et al.  Epstein-Barr virus nuclear antigen 2 activates transcription of the terminal protein gene , 1991, Journal of virology.

[17]  S. Burrows,et al.  An Epstein-Barr virus-specific cytotoxic T-cell epitope present on A- and B-type transformants , 1990 .

[18]  M. Rowe,et al.  Epstein-Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein , 1990, Journal of virology.

[19]  E. Kieff,et al.  Epstein-Barr virus latent membrane protein (LMP1) and nuclear proteins 2 and 3C are effectors of phenotypic changes in B lymphocytes: EBNA-2 and LMP1 cooperatively induce CD23 , 1990, Journal of virology.

[20]  S. Burrows,et al.  An Epstein-Barr virus-specific cytotoxic T cell epitope in EBV nuclear antigen 3 (EBNA 3) , 1990, The Journal of experimental medicine.

[21]  E. Kieff,et al.  Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. , 1989, The New England journal of medicine.

[22]  W. Hammerschmidt,et al.  Genetic analysis of immortalizing functions of Epstein–Barr virus in human B lymphocytes , 1989, Nature.

[23]  I. Ernberg,et al.  5-Azacytidine up regulates the expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) through EBNA-6 and latent membrane protein in the Burkitt's lymphoma line rael , 1989, Journal of virology.

[24]  M. Rowe,et al.  Epstein‐barr virus‐infected b cells persist in the circulation of acyclovir‐treated virus carriers , 1989, International journal of cancer.

[25]  Pierre Busson,et al.  Expression of Epstein‐Barr virus‐encoded proteins in nasopharyngeal carcinoma , 1988, International journal of cancer.

[26]  D. Gray,et al.  Antigen‐Driven Selection of Virgin and Memory B Cells , 1986, Immunological reviews.

[27]  A. McMichael,et al.  The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides , 1986, Cell.

[28]  R. Simmons,et al.  Epstein-Barr virus, immunodeficiency, and B cell lymphoproliferation. , 1985, Transplantation.

[29]  J. Gordon,et al.  Immortalized B lymphocytes produce B-cell growth factor , 1984, Nature.

[30]  I. Ernberg,et al.  Can Epstein-Barr virus infect and transform all the B-lymphocytes of human cord blood? , 1983, The Journal of general virology.

[31]  J. H. Pope,et al.  Long‐term T‐cell‐mediated immunity to epstein‐barr virus in man. IV. Development of T‐cell memory in convalescent infectious mononucleosis patients , 1980, International journal of cancer.

[32]  J. H. Pope,et al.  Long‐term T‐cell‐mediated immunity to Epstein‐Barr virus in man. III. Activation of cytotoxic T cells in virus‐infected leukocyte cultures , 1979, International journal of cancer.

[33]  G. Klein,et al.  Epstein–Barr Virus in Burkitt's Lymphoma and Nasopharyngeal Carcinoma: EBV DNA in Biopsies of Burkitt Tumours and Anaplastic Carcinomas of the Nasopharynx , 1970, Nature.