Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings

[1]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[2]  Kurt Hornik,et al.  Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks , 1990, Neural Networks.

[3]  A. Barron,et al.  Statistical properties of artificial neural networks , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[4]  Halbert White,et al.  Learning in Artificial Neural Networks: A Statistical Perspective , 1989, Neural Computation.

[5]  H. White,et al.  Universal approximation using feedforward networks with non-sigmoid hidden layer activation functions , 1989, International 1989 Joint Conference on Neural Networks.

[6]  Norio Baba,et al.  A new approach for finding the global minimum of error function of neural networks , 1989, Neural Networks.

[7]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[8]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[9]  S. M. Carroll,et al.  Construction of neural nets using the radon transform , 1989, International 1989 Joint Conference on Neural Networks.

[10]  Robert Hecht-Nielsen,et al.  Theory of the backpropagation neural network , 1989, International 1989 Joint Conference on Neural Networks.

[11]  Ker-Chau Li,et al.  Asymptotic Optimality for $C_p, C_L$, Cross-Validation and Generalized Cross-Validation: Discrete Index Set , 1987 .

[12]  A. Gallant,et al.  Semi-nonparametric Maximum Likelihood Estimation , 1987 .

[13]  H. Bierens Advances in Econometrics: Kernel estimators of regression functions , 1987 .

[14]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[15]  L. E. Scales,et al.  Introduction to Non-Linear Optimization , 1985 .

[16]  H. White Asymptotic theory for econometricians , 1985 .

[17]  D. Cox MULTIVARIATE SMOOTHING SPLINE FUNCTIONS , 1984 .

[18]  S. Geman,et al.  Nonparametric Maximum Likelihood Estimation by the Method of Sieves , 1982 .

[19]  G. Wahba Smoothing noisy data with spline functions , 1975 .

[20]  G. Wahba,et al.  A completely automatic french curve: fitting spline functions by cross validation , 1975 .

[21]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[22]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[23]  R. A. Silverman,et al.  Introductory Real Analysis , 1972 .

[24]  W. Rudin Real and complex analysis , 1968 .

[25]  George G. Lorentz,et al.  Approximation of Functions , 1968 .