Near L-edge Single and Multiple Photoionization of Doubly Charged Iron Ions

Using the photon–ion merged-beams technique at a synchrotron light source, we have measured relative cross sections for single and up to five-fold photoionization of Fe2+ ions in the energy range of 690–920 eV. This range contains thresholds and resonances associated with ionization and excitation of 2p and 2s electrons. Calculations were performed to simulate the total absorption spectra. The theoretical results show very good agreement with the experimental data, if overall energy shifts of up to 2.5 eV are applied to the calculated resonance positions and assumptions are made about the initial experimental population of the various levels of the Fe2+([Ar]3d6) ground configuration. Furthermore, we performed extensive calculations of the Auger cascades that result when an electron is removed from the 2p subshell of Fe2+. These computations lead to a better agreement with the measured product-charge-state distributions as compared to earlier work. We conclude that the L-shell absorption features of low-charged iron ions are useful for identifying gas-phase iron in the interstellar medium and for discriminating against the various forms of condensed-phase iron bound to composite interstellar dust grains.

[1]  A. Kilcoyne,et al.  Near L-edge Single and Multiple Photoionization of Triply Charged Iron Ions , 2019, The Astrophysical Journal.

[2]  C. Blancard,et al.  Absolute Photoionization Cross Section for Fe6+ to Fe10+ Ions in the Photon Energy Region of the 2p–3d Resonance Lines , 2018 .

[3]  S. Fritzsche,et al.  MCDF calculations of Auger cascade processes , 2017 .

[4]  L. Cederbaum,et al.  Neon in ultrashort and intense x-rays from free electron lasers , 2017, 1705.07521.

[5]  Stephan Fritzsche,et al.  Auger cascades in resonantly excited neon , 2017 .

[6]  A. Kilcoyne,et al.  Photoionization of Ne Atoms and Ne+ Ions Near the K Edge: PrecisionSpectroscopy and Absolute Cross-sections , 2017 .

[7]  M. Martins,et al.  Prominent role of multielectron processes in K -shell double and triple photodetachment of oxygen anions , 2016, 1609.05309.

[8]  A. Kilcoyne,et al.  Photoionisation of ions with synchrotron radiation: from ions in space to atoms in cages , 2016, 1702.06317.

[9]  C. Mendoza,et al.  Oxygen, neon, and iron X-ray absorption in the local interstellar medium , 2016, 1602.06955.

[10]  S. Kučas,et al.  CASCADES AFTER K-VACANCY PRODUCTION AND ADDITIONAL IONIZATION OR EXCITATION IN ATOMS OF LIGHT ELEMENTS , 2015 .

[11]  Stephan Fritzsche,et al.  Triple ionization of atomic Cd involving 4p(-1) and 4s(-1) inner-shell holes , 2015 .

[12]  S. Epp,et al.  Absolute measurement of radiative and Auger rates of K−shell−vacancy states in highly charged Fe ions , 2015 .

[13]  A. Kilcoyne,et al.  Observation of a four-electron Auger process in near-K-edge photoionization of singly charged carbon ions. , 2015, Physical review letters.

[14]  C. Mendoza,et al.  ISMabs: A COMPREHENSIVE X-RAY ABSORPTION MODEL FOR THE INTERSTELLAR MEDIUM , 2014, 1412.3813.

[15]  C. University,et al.  Absolute rate coefficients for photorecombination and electron-impact ionization of magnesiumlike iron ions from measurements at a heavy-ion storage ring , 2014, 1406.1679.

[16]  J. Ullrich,et al.  Absolute cross sections for photoionization of Xeq + ions (1 ⩽ q ⩽ 5) at the 3d ionization threshold , 2014, 1404.3021.

[17]  I. P. Grant,et al.  New version: Grasp2K relativistic atomic structure package , 2013, Comput. Phys. Commun..

[18]  S. Epp,et al.  X-ray resonant photoexcitation: linewidths and energies of Kα transitions in highly charged Fe ions. , 2013, Physical review letters.

[19]  Frank Siewert,et al.  The Variable Polarization XUV Beamline P04 at PETRA III: Optics, mechanics and their performance , 2013 .

[20]  F. D. Groot,et al.  The iron L edges: Fe 2p X-ray absorption and electron energy loss spectroscopy , 2013 .

[21]  C. H. Keitel,et al.  An unexpectedly low oscillator strength as the origin of the Fe xvii emission problem , 2012, Nature.

[22]  Stephan Fritzsche,et al.  The Ratip program for relativistic calculations of atomic transition, ionization and recombination properties , 2012, Comput. Phys. Commun..

[23]  T. Möller,et al.  2p x-ray absorption of free transition-metal cations across the 3d transition elements: Calcium through copper , 2012 .

[24]  M. Bautista,et al.  Fine-structure photoionization cross sections of Fe II , 2012 .

[25]  A. Kilcoyne,et al.  Photoionization measurements for the iron isonuclear sequence Fe{sup 3+}, Fe{sup 5+}, and Fe{sup 7+} , 2011 .

[26]  M. Grieser,et al.  STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT IONIZATION OF Fe12 + FORMING Fe13 + AND Fe14 + , 2011, 1507.04216.

[27]  C. Keitel,et al.  Resonant and near-threshold photoionization cross sections of Fe14+. , 2010, Physical review letters.

[28]  D. Rolles,et al.  Inner-shell photodetachment from Fe- , 2010 .

[29]  Bruce Ravel,et al.  CONDENSED MATTER ASTROPHYSICS: A PRESCRIPTION FOR DETERMINING THE SPECIES-SPECIFIC COMPOSITION AND QUANTITY OF INTERSTELLAR DUST USING X-RAYS , 2009, 0906.3720.

[30]  G. Miniutti,et al.  Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495 , 2009, Nature.

[31]  Edward B. Jenkins,et al.  A UNIFIED REPRESENTATION OF GAS-PHASE ELEMENT DEPLETIONS IN THE INTERSTELLAR MEDIUM , 2009, 0905.3173.

[32]  C. Blancard,et al.  Photoionization cross sections of iron isonuclear sequence ions: Fe 2 + to Fe 6 + , 2009 .

[33]  C. Fischer,et al.  Multiconfiguration Dirac–Hartree–Fock energy levels and transition probabilities for 3d5 in Fe iv , 2008, 0809.4720.

[34]  Walter Curtis Johnson,et al.  Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation , 2008 .

[35]  T. Snow,et al.  New Insights on Interstellar Gas-Phase Iron , 2007, 0710.1062.

[36]  I. P. Grant,et al.  The grasp2K relativistic atomic structure package , 2007, Comput. Phys. Commun..

[37]  M. Andersson,et al.  Spectral properties of In II from MCDHF calculations , 2007 .

[38]  S. Epp,et al.  Soft x-ray laser spectroscopy on trapped highly charged ions at FLASH. , 2007, Physical review letters.

[39]  M. Martins,et al.  Absolute photoionization cross sections of the ions Ca+–Ni+ , 2007 .

[40]  I. P. Grant,et al.  Relativistic quantum theory of atoms and molecules , 2006 .

[41]  H. Kjeldsen Photoionization cross sections of atomic ions from merged-beam experiments , 2006 .

[42]  Norbert S. Schulz,et al.  High-Resolution X-Ray Spectroscopy of the Interstellar Medium. II. Neon and Iron Absorption Edges , 2006, astro-ph/0605674.

[43]  J. Scofield,et al.  Electron Impact Excitation Cross Section Measurement for n = 3 to n = 2 Line Emission in Fe17+ to Fe23+ , 2006 .

[44]  S. Nahar Atomic data from the iron project - LXI. Radiative E1, E2, E3, and M1 transition probabilities for Fe IV , 2006 .

[45]  C. Blancard,et al.  Experimental and theoretical studies of the photoionization cross section of Fe 4 , 2006 .

[46]  M. Martins,et al.  Open shells and multi-electron interactions: core level photoionization of the 3d metal atoms , 2006 .

[47]  Luís M. N. B. F. Santos,et al.  New Static Apparatus and Vapor Pressure of Reference Materials: Naphthalene, Benzoic Acid, Benzophenone, and Ferrocene , 2006 .

[48]  S. Kaspi,et al.  Is the Fe M-Shell Absorber Part of the Outflow in Active Galactic Nuclei? , 2005, astro-ph/0507027.

[49]  C. J. Zeippen,et al.  Updated opacities from the Opacity Project , 2004, astro-ph/0410744.

[50]  M. Martins,et al.  Interplay of intra-atomic and interatomic effects: an investigation of the 2p core level spectra of atomic Fe and molecular FeCl2. , 2004, Physical review letters.

[51]  University College London,et al.  On the importance of inner-shell transitions for opacity calculations , 2003, astro-ph/0308393.

[52]  J. Bozek,et al.  Experimental link of photoionization of Sc2+ to photorecombination of Sc3+: an application of detailed balance in a unique atomic system. , 2002, Physical review letters.

[53]  N. Badnell,et al.  Dielectronic Recombination of Fe XIX Forming Fe XVIII: Laboratory Measurements and Theoretical Calculations , 2002, 0704.0905.

[54]  F. Folkmann,et al.  Measurements of the absolute photoionization cross section of Fe+ ions from 15.8 to 180 eV , 2002 .

[55]  P. Beiersdorfer,et al.  Laboratory Measurements of Iron L-Shell Emission: 3→2 Transitions of Fe XXI-XXIV between 10.5 and 12.5 Å , 2001 .

[56]  M. Sako,et al.  Soft X-Ray Absorption by Fe0+ to Fe15+ in Active Galactic Nuclei , 2001, astro-ph/0109314.

[57]  M. Martins Photoionization of open-shell atoms: the chlorine 2p excitation , 2001 .

[58]  Stephan Fritzsche,et al.  Ratip – a toolbox for studying the properties of open-shell atoms and ions , 2001 .

[59]  R. McCray,et al.  Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 26/01/00 ON THE ABSORPTION OF X-RAYS IN THE INTERSTELLAR MEDIUM , 2000 .

[60]  H. Koivisto,et al.  Metal ion beams from an ECR ion source using volatile compounds , 1994 .

[61]  M. Seaton,et al.  Opacities for stellar envelopes , 1994 .

[62]  S. Nahar,et al.  Atomic data for opacity calculations: XX. Photoionization cross sections and oscillator strengths for Fe II , 1994 .

[63]  Dmitri A. Verner,et al.  SUBSHELL PHOTOIONIZATION CROSS-SECTIONS AND IONIZATION ENERGIES OF ATOMS AND IONS FROM HE TO ZN , 1993 .

[64]  R. D. Cowan,et al.  The Theory of Atomic Structure and Spectra , 1981 .

[65]  S. Manson,et al.  Photoabsorption cross sections for positive atomic ions with Z equal to or less than 30 , 1979 .

[66]  F. Mies Configuration Interaction Theory. Effects of Overlapping Resonances , 1968 .

[67]  U. Fano,et al.  Line Profiles in the Far-uv Absorption Spectra of the Rare Gases , 1965 .

[68]  R. Madden,et al.  NEW AUTOIONIZING ATOMIC ENERGY LEVELS IN He, Ne, AND Ar , 1963 .

[69]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .