Site occupancy and electric-field induced strain response of Er-doped (Bi0.4Na0.4Sr0.2)TiO3 ceramics

[1]  A. Senyshyn,et al.  Enhanced thermal stability of dielectric, energy storage, and discharge efficiency in a structurally frustrated piezoelectric system: Erbium modified Na0.5Bi0.5TiO3-BaTiO3 , 2018, Journal of Applied Physics.

[2]  H. Du,et al.  Ultrahigh energy density and improved discharged efficiency in bismuth sodium titanate based relaxor ferroelectrics with A-site vacancy , 2018, Journal of Materiomics.

[3]  A. Feteira,et al.  Temperature stable electric field-induced strain in Er-doped BNT-BT-BKT ceramics , 2018, Materials Letters.

[4]  Haibo Zhang,et al.  Structure, dielectric, ferroelectric, and field-induced strain response properties of (Mg1/3Nb2/3)4+ complex-ion modified Bi0.5(Na0.82K0.18)0.5TiO3 lead-free ceramics , 2018 .

[5]  Peng Zheng,et al.  Large electrostrain response in binary Bi1/2Na1/2TiO3-Ba(Mg1/3Nb2/3)O3 solid solution ceramics , 2018 .

[6]  J. Rödel,et al.  Electric field–temperature phase diagram of sodium bismuth titanate-based relaxor ferroelectrics , 2018, Journal of Materials Science.

[7]  I. Reaney,et al.  Study of the temperature dependence of the giant electric field-induced strain in Nb-doped BNT-BT-BKT piezoceramics , 2018 .

[8]  W. Park,et al.  Ferroelectric properties and core shell domain structures of Fe-modified 0.77Bi0.5Na0.5TiO3-0.23SrTiO3 ceramics , 2017 .

[9]  W. Jo,et al.  Phase transition behavior and mechanical properties of (1-x)(Bi1/2Na1/2)TiO3-xSrTiO3 lead-free piezoelectric ceramics , 2017 .

[10]  Sangwook Kim,et al.  A correlation between piezoelectric response and crystallographic structural parameter observed in lead-free (1-x)(Bi0.5Na0.5)TiO3–xSrTiO3 piezoelectrics , 2017 .

[11]  I. Reaney,et al.  Band gap evolution and a piezoelectric-to-electrostrictive crossover in (1 − x)KNbO3–x(Ba0.5Bi0.5)(Nb0.5Zn0.5)O3 ceramics , 2017 .

[12]  I. Reaney,et al.  Composition and temperature dependence of structure and piezoelectricity in (1−x)(K1−yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics , 2017 .

[13]  Jianguo Zhu,et al.  Lead-Free KNbO3:xZnO Composite Ceramics. , 2016, ACS applied materials & interfaces.

[14]  D. Sinclair,et al.  Temperature stable and fatigue resistant lead-free ceramics for actuators , 2016 .

[15]  Leopoldo Molina-Luna,et al.  Formation of the core–shell microstructure in lead-free Bi1/2Na1/2TiO3-SrTiO3 piezoceramics and its influence on the electromechanical properties , 2016 .

[16]  K. Reichmann,et al.  Bismuth Sodium Titanate Based Materials for Piezoelectric Actuators , 2015, Materials.

[17]  Haibo Zhang,et al.  Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics , 2015 .

[18]  Kyle G. Webber,et al.  Transferring lead-free piezoelectric ceramics into application , 2015 .

[19]  W. Jo,et al.  Stress-dependent electromechanical properties of doped (Ba1−xCax)(ZryTi1−y)O3 , 2015 .

[20]  M. Dietze,et al.  The erbium's amphoteric behavior effects on sodium bismuth titanate properties , 2014 .

[21]  Wook Jo,et al.  Temperature- and Frequency-Dependent Properties of the 0.75Bi1/2Na1/2TiO3–0.25SrTiO3 Lead-Free Incipient Piezoceramic , 2014 .

[22]  Tim Jackson,et al.  Lone‐Pair‐Induced Covalency as the Cause of Temperature‐ and Field‐Induced Instabilities in Bismuth Sodium Titanate , 2012 .

[23]  Michael Naderer,et al.  BNT-based multilayer device with large and temperature independent strain made by a water-based preparation process , 2011 .

[24]  W. Jo,et al.  Electric-field-induced strain mechanisms in lead-free 94%(Bi1/2Na1/2)TiO3―6%BaTiO3 , 2011 .

[25]  D. Sinclair,et al.  Average and Local Structure of (1-X)Batio3-Xlayo(3) (0 , 2010 .

[26]  K. Reichmann,et al.  Piezoelectric properties and phase transition temperatures of the solid solution of (1−x)(Bi0.5Na0.5)TiO3–xSrTiO3 , 2010 .

[27]  Dragan Damjanovic,et al.  High‐Strain Lead‐free Antiferroelectric Electrostrictors , 2009 .

[28]  Hajime Nagata,et al.  Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3 ferroelectric ceramics , 2008 .

[29]  Kenji Matsumoto,et al.  Electric-field-induced strain in Mn-doped KNbO3 ferroelectric ceramics , 2008 .

[30]  Helmut Ehrenberg,et al.  Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system , 2007 .

[31]  O. P. Thakur,et al.  Influence of attrition milling on the electrical properties of undoped-BaTiO3 , 2007 .

[32]  Yiping Guo,et al.  Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics , 2004 .

[33]  William L. Warren,et al.  Electron Paramagnetic Resonance Investigations of Lanthanide-Doped Barium Titanate: Dopant Site Occupancy , 2004 .

[34]  Yiping Guo,et al.  Dielectric and piezoelectric properties of lead-free (Na0.5K0.5)NbO3–SrTiO3 ceramics , 2003 .

[35]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .