O-Band and C/L-Band III-V Quantum Dot Lasers Monolithically Grown on Ge and Si Substrate

Direct epitaxial growth of III-V heterostructure on CMOS-compatible silicon wafer offers substantial manufacturing cost and scalability advantages. Quantum dot (QD) devices are less sensitive to defect and temperature, which makes epitaxially grown III-V QD lasers on Si one of the most promising technologies for achieving low-cost, scalable integration with silicon photonics. The major challenges are that heteroepitaxial growth of III-V materials on Si normally encounters high densities of mismatch dislocations, antiphase boundaries and thermal cracks, which limit the device performance and lifetime. This paper reviews some of the recent developments on hybrid InAs/GaAs QD growth on Ge substrates and highly uniform (111)-faceted hollow Si (001) substrates by molecular beam epitaxy (MBE). By implementing step-graded epitaxial growth techniques, the emission wavelength can be tuned into either an O band or C/L band. Furthermore, microcavity QD laser devices are fabricated and characterized. The epitaxially grown III-V/IV hybrid platform paves the way to provide a promising approach for future on-chip silicon photonic integration.

[1]  Zeev Zalevsky,et al.  Prospects for diode-pumped alkali-atom-based hollow-core photonic-crystal fiber lasers. , 2014, Optics letters.

[2]  Alwyn J. Seeds,et al.  Optimisation of 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates , 2015 .

[3]  Zeyu Zhang,et al.  1.3 μm Submilliamp Threshold Quantum Dot Micro-lasers on Si , 2017 .

[4]  Alexander Fang,et al.  An all-silicon Raman laser , 2005, Nature.

[5]  A. Seeds,et al.  Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Tom Baehr Jones,et al.  50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm , 2013, OFC 2014.

[7]  H. Zimmermann,et al.  Zero-bias 40Gbit/s germanium waveguide photodetector on silicon. , 2012, Optics express.

[8]  John E. Bowers,et al.  Highly Improved Reliability of Low Threshold 1.3 μm III/V Quantum Dot Laser Epitaxially Grown on On-axis Si , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[9]  Thierry Baron,et al.  Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. , 2017, Optics express.

[10]  Jinzhong Yu,et al.  High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. , 2013, Optics express.

[11]  Owers,et al.  Directly modulated 1 . 3 μ m quantum dot lasers epitaxially grown on silicon , 2018 .

[12]  John E. Bowers,et al.  Electrically pumped continuous wave 1.3 µm quantum dot lasers epitaxially grown on on-axis (001) Si , 2016, 2016 International Semiconductor Laser Conference (ISLC).

[13]  Yoshio Itoh,et al.  1.5 µm-Long-Wavelength Multiple Quantum Well Laser on a Si Substrate , 1991 .

[14]  Zhiping Zhou,et al.  On-chip light sources for silicon photonics , 2015, Light: Science & Applications.

[15]  Alwyn J. Seeds,et al.  InAs/GaAs quantum-dot superluminescent diodes monolithically grown on a Ge substrate. , 2014, Optics express.

[16]  Hon Ki Tsang,et al.  Device engineering for silicon photonics , 2011 .

[17]  Mitsuru Sugawara,et al.  Quantum dot devices: Handling the heat , 2009 .

[18]  David J. Thomson,et al.  Silicon optical modulators , 2010 .

[19]  M. Morse,et al.  31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate. , 2007, Optics express.

[20]  Richard Beanland,et al.  In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates. , 2016, Optics express.

[21]  Reza Salem,et al.  Silicon-chip-based ultrafast optical oscilloscope , 2008, Nature.

[22]  Ashok V. Krishnamoorthy,et al.  Wide bandwidth, low loss 1 by 4 wavelength division multiplexer on silicon for optical interconnects , 2011 .

[23]  Kei May Lau,et al.  Epitaxial growth of high quality InP on Si substrates: The role of InAs/InP quantum dots as effective dislocation filters , 2018 .

[24]  M.K. Emsley,et al.  High speed resonant-cavity enhanced Ge photodetectors on reflecting Si substrates for 1550 nm operation , 2004, The 17th Annual Meeting of the IEEELasers and Electro-Optics Society, 2004. LEOS 2004..

[25]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[26]  Yi Wang,et al.  Low-noise 13  μm InAs/GaAs quantum dot laser monolithically grown on silicon , 2018, Photonics Research.

[27]  John E. Bowers,et al.  Quantum dot lasers for silicon photonics [Invited] , 2015 .

[28]  Herbert Kroemer,et al.  On the (110) orientation as the preferred orientation for the molecular beam epitaxial growth of GaAs on Ge, GaP on Si, and similar zincblende‐on‐diamond systems , 1980 .

[29]  Geert Morthier,et al.  Novel Light Source Integration Approaches for Silicon Photonics , 2017 .

[30]  John E. Bowers,et al.  Energy Efficient and Energy Proportional Optical Interconnects for Multi-Core Processors: Driving the Need for On-Chip Sources , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[31]  Qi Feng,et al.  InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm , 2018, 2018 Asia Communications and Photonics Conference (ACP).

[32]  J. Bowers,et al.  Ultra‐low loss waveguide platform and its integration with silicon photonics , 2014 .

[33]  Joni Dambre,et al.  Trainable hardware for dynamical computing using error backpropagation through physical media , 2014, Nature Communications.

[34]  M. S. Skolnick,et al.  Optimizing the growth of 1.3 μm InAs/InGaAs dots-in-a-well structure , 2003 .

[35]  Kei May Lau,et al.  Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. , 2016, Optics letters.

[36]  Wim Bogaerts,et al.  Silicon and silicon nitride photonic circuits for spectroscopic sensing on-a-chip [Invited] , 2015 .

[37]  John E. Bowers,et al.  Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources , 2016 .

[38]  Kristian M. Groom,et al.  Improved performance of 1.3μm multilayer InAs quantum-dot lasers using a high-growth-temperature GaAs spacer layer , 2004 .

[39]  Alwyn J. Seeds,et al.  Semiconductor III–V lasers monolithically grown on Si substrates , 2012 .

[40]  Ting Wang,et al.  C/L-band emission of InAs QDs monolithically grown on Ge substrate , 2017 .

[41]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[42]  Richard A. Hogg,et al.  Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate , 2011 .

[43]  Oliver G. Schmidt,et al.  Role of the wetting layer for the SiGe Stranski–Krastanow island growth on planar and pit-patterned substrates , 2010 .

[44]  Kei May Lau,et al.  InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band , 2015 .

[45]  Zeev Zalevsky,et al.  Design of 4 × 1 Power Beam Combiner Based on MultiCore Photonic Crystal Fiber , 2017 .

[46]  Miles V. Klein,et al.  Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy , 1985 .

[47]  Kei May Lau,et al.  Continuous-Wave Optically Pumped 1.55 μm InAs/InAlGaAs Quantum Dot Microdisk Lasers Epitaxially Grown on Silicon , 2017 .

[48]  H. Thacker,et al.  A tunable 1x4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects. , 2010, Optics express.

[49]  Masao Tamura,et al.  Relationship between the optical and structural properties in GaAs heteroepitaxial layers grown on Si substrates , 1994 .

[50]  John E. Bowers,et al.  1310nm Silicon Evanescent Laser , 2007 .

[51]  Michael R. Watts,et al.  Large-scale nanophotonic phased array , 2013, Nature.

[52]  Kei May Lau,et al.  1.5μm quantum-dot diode lasers directly grown on CMOS-standard (001) silicon , 2018, Applied Physics Letters.

[53]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[54]  Richard A. Hogg,et al.  The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates , 2012 .

[55]  Pallab Bhattacharya,et al.  High-Performance Quantum Dot Lasers and Integrated Optoelectronics on Si , 2009, Proceedings of the IEEE.

[56]  Gregory J. Salamo,et al.  Long-Wavelength InAs/GaAs Quantum-Dot Light Emitting Sources Monolithically Grown on Si Substrate , 2015 .

[57]  Qi Jiang,et al.  InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si, Ge, and Ge-on-Si Substrates , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[58]  Alwyn J. Seeds,et al.  1.3-μm InAs/GaAs quantum-dot laser monolithically grown on Si Substrates operating over 100°C , 2014 .

[59]  Alwyn Seeds,et al.  Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. , 2012, Optics express.

[60]  A. Rickman The commercialization of silicon photonics , 2014, Nature Photonics.

[61]  Alwyn Seeds,et al.  III-IV quantum dot lasers epitaxially grown on Si , 2017, 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[62]  Michael L Davenport,et al.  Title: font: times; size: 18 point; style: plain; justified: center; capitalization: first word and Names only , 2012 .

[63]  Peter Michael Smowton,et al.  InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si Substrate , 2014 .

[64]  Jens H. Schmid,et al.  Roadmap on silicon photonics , 2016 .

[65]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[66]  Thomas Udem,et al.  Cavity-enhanced dual-comb spectroscopy , 2009, 0908.1928.

[67]  Yasuhiko Arakawa,et al.  Direct modulation of 1.3 μm quantum dot lasers on silicon at 60 °C. , 2016, Optics express.

[68]  Damien Bonneau,et al.  Silicon Quantum Photonics , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[69]  Alwyn J. Seeds,et al.  Optimisation of the dislocation filter layers in 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates , 2015 .

[70]  Jian Li,et al.  1.3 μm InAs/GaAs quantum dot lasers on silicon with GaInP upper cladding layers , 2018 .

[71]  Ashok V. Krishnamoorthy,et al.  Silicon photonics: Energy-efficient communication , 2011 .

[72]  Kei May Lau,et al.  Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon , 2015 .