Characterizing pseudoperiodic time series through the complex network approach

[1]  J. Rogers Chaos , 1876, Molecular Vibrations.

[2]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[3]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[4]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[5]  Thomas Schreiber,et al.  PHASE SPACE EMBEDDING OF ELECTROCARDIOGRAMS , 1998, chao-dyn/9807035.

[6]  Goutam Saha,et al.  Robust method for periodicity detection and characterization of irregular cyclical series in terms of embedded periodic components , 1999 .

[7]  Michael Small,et al.  Deterministic nonlinearity in ventricular fibrillation. , 2000, Chaos.

[8]  R Pastor-Satorras,et al.  Dynamical and correlation properties of the internet. , 2001, Physical review letters.

[9]  Michael Small,et al.  Surrogate Test for Pseudoperiodic Time Series Data , 2001 .

[10]  Michael Small,et al.  Temporal Evolution of nonlinear Dynamics in Ventricular Arrhythmia , 2001, Int. J. Bifurc. Chaos.

[11]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[12]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[13]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[14]  M E J Newman Assortative mixing in networks. , 2002, Physical review letters.

[15]  M. Small,et al.  Uncovering non-linear structure in human ECG recordings , 2002 .

[16]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[17]  R. M. Dijkstra Information Processing Letters , 2003 .

[18]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[19]  K. Kaski,et al.  Intensity and coherence of motifs in weighted complex networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Yan Liu,et al.  Enhancement and sustainment of internal stochastic resonance in unidirectional coupled neural system. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  M Small,et al.  Detecting chaos in pseudoperiodic time series without embedding. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[23]  M Small,et al.  Complex network from pseudoperiodic time series: topology versus dynamics. , 2006, Physical review letters.

[24]  A. d’Onofrio Fractal growth of tumors and other cellular populations: Linking the mechanistic to the phenomenological modeling and vice versa , 2009, 1309.3329.

[25]  Physics Reports , 2022 .