Calculating Hausdorff Dimension in Higher Dimensional Spaces

In this paper, we prove the identity dim H ( F ) = d · dim H ( α − 1 ( F ) ) , where dim H denotes Hausdorff dimension, F ⊆ R d , and α : [ 0 , 1 ] → [ 0 , 1 ] d is a function whose constructive definition is addressed from the viewpoint of the powerful concept of a fractal structure. Such a result stands particularly from some other results stated in a more general setting. Thus, Hausdorff dimension of higher dimensional subsets can be calculated from Hausdorff dimension of 1-dimensional subsets of [ 0 , 1 ] . As a consequence, Hausdorff dimension becomes available to deal with the effective calculation of the fractal dimension in applications by applying a procedure contributed by the authors in previous works. It is also worth pointing out that our results generalize both Skubalska-Rafajlowicz and Garcia-Mora-Redtwitz theorems.

[1]  S. Milne Peano curves and smoothness of functions , 1980 .

[2]  M. A. S'anchez-Granero,et al.  Fractal dimension for fractal structures: A Hausdorff approach , 2010 .

[3]  Christoph Bandt,et al.  Topological spaces admitting a unique fractal structure , 1992, Fundamenta Mathematicae.

[4]  Symmetry Reductions for a Generalized Fifth Order KdV Equation , 2017 .

[5]  M. Fernández-Martínez,et al.  A new fractal dimension for curves based on fractal structures , 2016 .

[6]  Miguel Ángel Sánchez Granero,et al.  How to calculate the Hausdorff dimension using fractal structures , 2015, Appl. Math. Comput..

[7]  F. G. Arenas,et al.  A characterization of non-archimedeanly quasimetrizable spaces , 1999 .

[8]  L. Pontrjagin,et al.  Sur Une Propriete Metrique de la Dimension , 1932 .

[9]  Miguel Ángel Sánchez Granero,et al.  Fractal dimension for fractal structures: Applications to the domain of words , 2012, Appl. Math. Comput..

[10]  Farhad Khellat,et al.  A global solution for a reaction-diffusion equation on bounded domains , 2018, Applied Mathematics and Nonlinear Sciences.

[11]  M. Fernández-Martínez,et al.  Fractal Dimension for Fractal Structures , 2010, 1007.3236.

[12]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[13]  Ewa Skubalska-Rafajłowicz,et al.  A new method of estimation of the box-counting dimension of multivariate objects using space-filling curves , 2005 .

[14]  Manuel Fernández-Martínez,et al.  Fractal dimension for fractal structures: A Hausdorff approach revisited , 2010, 1007.3960.

[15]  A. A. Ansari Investigation of the effect of albedo and oblateness on the circular restricted four variable bodies problem , 2017 .

[16]  Box-counting dimension computed by α-dense curves , 2017 .

[17]  S. Krantz Fractal geometry , 1989 .

[18]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .