Degradation Mechanisms Investigation for Long-term Thermal Stability of Dye-Sensitized Solar Cells

[1]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[2]  Qing Wang,et al.  Efficiency Limitations in Dye-Sensitized Solar Cells Caused by Inefficient Sensitizer Regeneration , 2011 .

[3]  Polycarpos Falaras,et al.  Solvent Effects at the Photoelectrode/Electrolyte Interface of a DSC: A Combined Spectroscopic and Photoelectrochemical Study , 2011 .

[4]  F. Kong,et al.  Experimental Investigation of Back Electron Transfer and Band Edge Shift in Dyed TiO2 Electrodes , 2011 .

[5]  Peter Lund,et al.  Device Physics of Dye Solar Cells , 2010, Advanced materials.

[6]  Fuyou Li,et al.  Phosphorescence imaging of homocysteine and cysteine in living cells based on a cationic iridium(III) complex. , 2010, Inorganic chemistry.

[7]  Yi-Hui Cheng,et al.  Tuning Spectral and Electrochemical Properties of Porphyrin-Sensitized Solar Cells , 2010 .

[8]  Young-Sam Jung,et al.  Relation of Ru(II) dye desorption from TiO2 film during illumination with photocurrent decrease of dye-sensitized solar cells , 2010 .

[9]  Peter Lund,et al.  Review of stability for advanced dye solar cells , 2010 .

[10]  Takayuki Kitamura,et al.  Thermal stability of dye-sensitized solar cells with current collecting grid , 2009 .

[11]  Yasuhiko Takeda,et al.  Monolithically series-interconnected transparent modules of dye-sensitized solar cells , 2009 .

[12]  Yasuhiko Takeda,et al.  Degradation analysis of dye-sensitized solar cell module after long-term stability test under outdoor working condition , 2009 .

[13]  M. Grätzel,et al.  Influence of sodium cations of N3 dye on the photovoltaic performance and stability of dye-sensitized solar cells. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[15]  Juan Bisquert,et al.  High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping. , 2008, Journal of the American Chemical Society.

[16]  Peter Lund,et al.  Spectral Characteristics of Light Harvesting, Electron Injection, and Steady-State Charge Collection in Pressed TiO2 Dye Solar Cells , 2008 .

[17]  Shuanghong Chen,et al.  The design and outdoor application of dye-sensitized solar cells , 2008 .

[18]  D. Leung,et al.  Theoretical modelling of the electrode thickness effect on maximum power point of dye-sensitized solar cell , 2008 .

[19]  Mohammad Khaja Nazeeruddin,et al.  Fabrication of screen‐printing pastes from TiO2 powders for dye‐sensitised solar cells , 2007 .

[20]  Qing Wang,et al.  Characteristics of high efficiency dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[21]  Liyuan Han,et al.  Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit , 2006 .

[22]  Yukio Ogata,et al.  Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. , 2006, The journal of physical chemistry. B.

[23]  M. Grätzel Photovoltaic performance and long-term stability of dye-sensitized meosocopic solar cells , 2006 .

[24]  Emilio Palomares,et al.  Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. , 2005, Journal of the American Chemical Society.

[25]  Ryuji Kikuchi,et al.  Impedance Analysis of Internal Resistance Affecting the Photoelectrochemical Performance of Dye-Sensitized Solar Cells , 2005 .

[26]  A. Hagfeldt,et al.  Coordinative interactions in a dye-sensitized solar cell , 2004 .

[27]  P. M. Sommeling,et al.  Long-term stability testing of dye-sensitized solar cells , 2004 .

[28]  Ying-xu Chen,et al.  Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation , 2004 .

[29]  Jani Kallioinen,et al.  Photoinduced ultrafast dye-to-semiconductor electron injection from nonthermalized and thermalized donor states. , 2002, Journal of the American Chemical Society.

[30]  Andreas F. Meyer,et al.  Long‐term stability of dye‐sensitised solar cells , 2001 .

[31]  Arthur J. Frank,et al.  Nonthermalized Electron Transport in Dye-Sensitized Nanocrystalline TiO2 Films: Transient Photocurrent and Random-Walk Modeling Studies , 2001 .

[32]  A. Hagfeldt,et al.  Resonance Raman Scattering of a Dye-Sensitized Solar Cell: Mechanism of Thiocyanato Ligand Exchange , 2001 .

[33]  P. Liska,et al.  Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. , 1999, Inorganic chemistry.

[34]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[35]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[36]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[37]  B. P. Sullivan,et al.  Thioether, thiolato, and 1,1-dithioato complexes of bis(2,2'-bipyridine)ruthenium(II) and bis(2,2'-bipyridine)osmium(II) , 1985 .

[38]  Juan Bisquert,et al.  Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer , 2002 .