GI-graphs: a new class of graphs with many symmetries

The class of generalized Petersen graphs was introduced by Coxeter in the 1950s. Frucht, Graver and Watkins determined the automorphism groups of generalized Petersen graphs in 1971, and much later, Nedela and Škoviera and (independently) Lovrečič-Saražin characterised those which are Cayley graphs. In this paper we extend the class of generalized Petersen graphs to a class of GI-graphs. For any positive integer n and any sequence j0,j1,…,jt−1 of integers mod n, the GI-graph GI(n;j0,j1,…,jt−1) is a (t+1)-valent graph on the vertex set $\mathbb{Z}_{t} \times\mathbb{Z}_{n}$, with edges of two kinds: an edge from (s,v) to (s′,v), for all distinct $s,s' \in \mathbb{Z}_{t}$ and all $v \in\mathbb{Z}_{n}$,edges from (s,v) to (s,v+js) and (s,v−js), for all $s \in\mathbb{Z}_{t}$ and $v \in\mathbb{Z}_{n}$. By classifying different kinds of automorphisms, we describe the automorphism group of each GI-graph, and determine which GI-graphs are vertex-transitive and which are Cayley graphs. A GI-graph can be edge-transitive only when t≤3, or equivalently, for valence at most 4. We present a unit-distance drawing of a remarkable GI(7;1,2,3).

[1]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[2]  M. Watkins,et al.  A theorem on tait colorings with an application to the generalized Petersen graphs , 1969 .

[3]  Martin Skoviera,et al.  Which generalized petersen graphs are cayley graphs? , 1995, J. Graph Theory.

[4]  Branko Grünbaum,et al.  The Real Configuration (214) , 1990 .

[5]  J. Graver,et al.  The groups of the generalized Petersen graphs , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Tomaž Pisanski,et al.  Configurations from a Graphical Viewpoint , 2012, Ars Math. Contemp..

[7]  Marko Petkovsek,et al.  Enumeration of I-graphs: Burnside does it again , 2009, Ars Math. Contemp..

[8]  Marko Lovrecic Sarazin,et al.  Generalizing the generalized Petersen graphs , 2007, Discret. Math..

[9]  Tomaz Pisanski,et al.  Products of unit distance graphs , 2010, Discret. Math..

[10]  Frank Harary,et al.  Graph Theory , 2016 .

[11]  Tomaz Pisanski,et al.  Isomorphism Checking of I-graphs , 2012, Graphs Comb..

[12]  Stefko Miklavic,et al.  A note on a conjecture on consistent cycles , 2013, Ars Math. Contemp..

[13]  Dragan Marusic,et al.  Vertex-transitive expansions of (1, 3)-trees , 2010, Discret. Math..

[14]  Tomaz Pisanski,et al.  ALL GENERALIZED PETERSEN GRAPHS ARE UNIT-DISTANCE GRAPHS , 2012 .

[15]  R. Frucht,et al.  On the groups of repeated graphs , 1949 .

[16]  Tomaz Pisanski,et al.  Multiple Kronecker covering graphs , 2005, Eur. J. Comb..

[17]  Tomaž Pisanski,et al.  I‐graphs and the corresponding configurations , 2005 .

[18]  H. Coxeter Self-dual configurations and regular graphs , 1950 .

[19]  Marko Lovrecic Sarazin A Note on the Generalized Petersen Graphs That Are Also Cayley Graphs , 1997, J. Comb. Theory, Ser. B.

[20]  Joy Morris,et al.  Automorphisms of circulants that respect partitions , 2012, Contributions Discret. Math..