GI-graphs: a new class of graphs with many symmetries
暂无分享,去创建一个
[1] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[2] M. Watkins,et al. A theorem on tait colorings with an application to the generalized Petersen graphs , 1969 .
[3] Martin Skoviera,et al. Which generalized petersen graphs are cayley graphs? , 1995, J. Graph Theory.
[4] Branko Grünbaum,et al. The Real Configuration (214) , 1990 .
[5] J. Graver,et al. The groups of the generalized Petersen graphs , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.
[6] Tomaž Pisanski,et al. Configurations from a Graphical Viewpoint , 2012, Ars Math. Contemp..
[7] Marko Petkovsek,et al. Enumeration of I-graphs: Burnside does it again , 2009, Ars Math. Contemp..
[8] Marko Lovrecic Sarazin,et al. Generalizing the generalized Petersen graphs , 2007, Discret. Math..
[9] Tomaz Pisanski,et al. Products of unit distance graphs , 2010, Discret. Math..
[10] Frank Harary,et al. Graph Theory , 2016 .
[11] Tomaz Pisanski,et al. Isomorphism Checking of I-graphs , 2012, Graphs Comb..
[12] Stefko Miklavic,et al. A note on a conjecture on consistent cycles , 2013, Ars Math. Contemp..
[13] Dragan Marusic,et al. Vertex-transitive expansions of (1, 3)-trees , 2010, Discret. Math..
[14] Tomaz Pisanski,et al. ALL GENERALIZED PETERSEN GRAPHS ARE UNIT-DISTANCE GRAPHS , 2012 .
[15] R. Frucht,et al. On the groups of repeated graphs , 1949 .
[16] Tomaz Pisanski,et al. Multiple Kronecker covering graphs , 2005, Eur. J. Comb..
[17] Tomaž Pisanski,et al. I‐graphs and the corresponding configurations , 2005 .
[18] H. Coxeter. Self-dual configurations and regular graphs , 1950 .
[19] Marko Lovrecic Sarazin. A Note on the Generalized Petersen Graphs That Are Also Cayley Graphs , 1997, J. Comb. Theory, Ser. B.
[20] Joy Morris,et al. Automorphisms of circulants that respect partitions , 2012, Contributions Discret. Math..