The central role of the mitochondrial megachannel in apoptosis: evidence obtained with intact cells, isolated mitochondria, and purified protein complexes.

[1]  G. Kroemer,et al.  Potassium leakage during the apoptotic degradation phase. , 1998, Journal of immunology.

[2]  G. Kroemer,et al.  The Permeability Transition Pore Complex: A Target for Apoptosis Regulation by Caspases and Bcl-2–related Proteins , 1998, The Journal of experimental medicine.

[3]  G. Kroemer,et al.  Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. , 1998, Immunology letters.

[4]  G. Kroemer,et al.  The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition , 1998, Oncogene.

[5]  G. Kroemer,et al.  Molecular and cellular mechanisms of T lymphocyte apoptosis. , 1998, Advances in immunology.

[6]  G. Kroemer,et al.  The mitochondrial death/life regulator in apoptosis and necrosis. , 1998, Annual review of physiology.

[7]  G. Kroemer,et al.  A cytofluorometric assay of nuclear apoptosis induced in a cell-free system: application to ceramide-induced apoptosis. , 1997, Experimental cell research.

[8]  G. Kroemer,et al.  The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death , 1997, Oncogene.

[9]  Guido Kroemer,et al.  Mitochondrial implication in apoptosis. Towards an endosymbiont hypothesis of apoptosis evolution , 1997, Cell Death and Differentiation.

[10]  G. Kroemer,et al.  The Central Executioner of Apoptosis: Multiple Connections between Protease Activation and Mitochondria in Fas/APO-1/CD95- and Ceramide-induced Apoptosis , 1997, The Journal of experimental medicine.

[11]  G. Kroemer,et al.  Nitric oxide induces apoptosis via triggering mitochondrial permeability transition , 1997, FEBS letters.

[12]  Guido Kroemer,et al.  The proto-oncogene Bcl-2 and its role in regulating apoptosis , 1997, Nature Medicine.

[13]  G. Kroemer,et al.  Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. , 1997, Journal of immunology.

[14]  Tamara Hirsch,et al.  Mitochondrial Implication in Accidental and Programmed Cell Death: Apoptosis and Necrosis , 1997, Journal of bioenergetics and biomembranes.

[15]  G. Kroemer,et al.  Redox regulation of apoptosis: Impact of thiol oxidation status on mitochondrial function , 1997, European journal of immunology.

[16]  G. Kroemer,et al.  Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. , 1997, Cancer research.

[17]  G. Kroemer,et al.  Chloromethyl-X-Rosamine is an aldehyde-fixable potential-sensitive fluorochrome for the detection of early apoptosis. , 1996, Cytometry.

[18]  G. Kroemer,et al.  Mitochondrial permeability transition triggers lymphocyte apoptosis. , 1996, Journal of immunology.

[19]  G. Kroemer,et al.  Bcl-2 inhibits the mitochondrial release of an apoptogenic protease , 1996, The Journal of experimental medicine.

[20]  G. Kroemer,et al.  Mitochondrial permeability transition is a central coordinating event of apoptosis , 1996, The Journal of experimental medicine.

[21]  G. Kroemer,et al.  Sequential acquisition of mitochondrial and plasma membrane alterations during early lymphocyte apoptosis. , 1996, Journal of immunology.

[22]  G. Kroemer,et al.  Apoptosis-associated derangement of mitochondrial function in cells lacking mitochondrial DNA. , 1996, Cancer research.

[23]  G. Kroemer,et al.  Mitochondrial control of nuclear apoptosis , 1996, The Journal of experimental medicine.

[24]  G. Kroemer,et al.  Mitochondrial perturbations define lymphocytes undergoing apoptotic depletion in vivo , 1995, European journal of immunology.

[25]  Guido Kroemer,et al.  The biochemistry of programmed cell death , 1995, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[26]  G. Kroemer,et al.  Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death , 1995, The Journal of experimental medicine.

[27]  G. Kroemer,et al.  Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo , 1995, The Journal of experimental medicine.