Stability analysis of swarms

We specify an "individual-based" continuous time model for swarm aggregation in n-dimensional space and study its stability properties. We show that the individuals (autonomous agents or biological creatures) will form a cohesive swarm in a finite time. Moreover, we obtain an explicit bound on the swarm size, which depends only on the parameters of the swarm model.

[1]  K. Warburton,et al.  Tendency-distance models of social cohesion in animal groups. , 1991, Journal of Theoretical Biology.

[2]  Masafumi Yamashita,et al.  Distributed Anonymous Mobile Robots: Formation of Geometric Patterns , 1999, SIAM J. Comput..

[3]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[4]  Yang Liu,et al.  Stability analysis of M-dimensional asynchronous swarms with a fixed communication topology , 2003, IEEE Trans. Autom. Control..

[5]  Ping Liang,et al.  Pattern reconfiguration in swarms-convergence of a distributed asynchronous and bounded iterative algorithm , 1996, IEEE Trans. Robotics Autom..

[6]  Marios M. Polycarpou,et al.  Stability analysis of M-dimensional asynchronous swarms with a fixed communication topology , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[7]  Kai Jin,et al.  Stability of synchronized distributed control of discrete swarm structures , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[8]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[9]  Swaroop Darbha,et al.  Intelligent Cruise Control Systems And Traffic Flow Stability , 1998 .

[10]  Yang Liu,et al.  Stability analysis of one-dimensional asynchronous swarms , 2003, IEEE Trans. Autom. Control..

[11]  Julia K. Parrish,et al.  Animal Groups in Three Dimensions: Analysis , 1997 .

[12]  Hayakawa,et al.  Collective motion in a system of motile elements. , 1996, Physical review letters.

[13]  Petter Ögren,et al.  A control Lyapunov function approach to multi-agent coordination , 2001 .

[14]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[15]  Marios M. Polycarpou,et al.  Stability analysis of one-dimensional asynchronous mobile swarms , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[16]  T. Vicsek,et al.  Collective behavior of interacting self-propelled particles , 2000, cond-mat/0611742.

[17]  Hongyan Wang,et al.  Social potential fields: A distributed behavioral control for autonomous robots , 1995, Robotics Auton. Syst..

[18]  Petros A. Ioannou,et al.  A Comparision of Spacing and Headway Control Laws for Automatically Controlled Vehicles1 , 1994 .

[19]  A. Ōkubo Dynamical aspects of animal grouping: swarms, schools, flocks, and herds. , 1986, Advances in biophysics.

[20]  Mario Innocenti,et al.  Autonomous formation flight , 2000 .

[21]  C. Breder Equations Descriptive of Fish Schools and Other Animal Aggregations , 1954 .

[22]  Vicsek,et al.  Formation of complex bacterial colonies via self-generated vortices. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  W. Rappel,et al.  Self-organization in systems of self-propelled particles. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Yunhui Liu,et al.  Delay-dependent/delay-independent stability of linear systems with multiple time-varying delays , 2003, IEEE Trans. Autom. Control..

[25]  J. Bender,et al.  On the Flow Capacity of Automated Highways , 1970 .

[26]  A. Ōkubo,et al.  MODELLING SOCIAL ANIMAL AGGREGATIONS , 1994 .

[27]  T. Vicsek,et al.  Spontaneously ordered motion of self-propelled particles , 1997, cond-mat/0611741.

[28]  Vijay Kumar,et al.  Controlling formations of multiple mobile robots , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[29]  Xiaoming Hu,et al.  Formation constrained multi-agent control , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[30]  Naomi Ehrich Leonard,et al.  Virtual leaders, artificial potentials and coordinated control of groups , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).