Prediction and system identification in chaotic nonlinear systems: Time series with broadband spectra
暂无分享,去创建一个
[1] Eckmann,et al. Liapunov exponents from time series. , 1986, Physical review. A, General physics.
[2] P. Grassberger,et al. Characterization of Strange Attractors , 1983 .
[3] Michael A. Saunders,et al. User''s guide for NPSOL (Ver-sion 4.0): A FORTRAN package for nonlinear programming , 1984 .
[4] I. J. Leontaritis,et al. Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .
[5] William H. Press,et al. Numerical recipes , 1990 .
[6] D. Rand,et al. Dynamical Systems and Turbulence, Warwick 1980 , 1981 .
[7] Fraser,et al. Independent coordinates for strange attractors from mutual information. , 1986, Physical review. A, General physics.
[8] James P. Crutchfield,et al. Geometry from a Time Series , 1980 .
[9] J. Theiler. Quantifying Chaos: Practical Estimation of the Correlation Dimension. , 1988 .
[10] I. Shimada,et al. A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .
[11] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[12] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[13] D. Ruelle,et al. Ergodic theory of chaos and strange attractors , 1985 .
[14] M. Hénon. A two-dimensional mapping with a strange attractor , 1976 .
[15] Azriel Rosenfeld,et al. Digital Picture Processing , 1976 .
[16] Farmer,et al. Predicting chaotic time series. , 1987, Physical review letters.
[17] G. Benettin,et al. Kolmogorov entropy of a dynamical system with an increasing number of degrees of freedom , 1979 .