Resting-state connectivity and functional specialization in human medial parieto-occipital cortex

According to recent models of visuo-spatial processing, the medial parieto-occipital cortex is a crucial node of the dorsal visual stream. Evidence from neurophysiological studies in monkeys has indicated that the parieto-occipital sulcus (POS) contains three functionally and cytoarchitectonically distinct areas: the visual area V6 in the fundus of the POS, and the visuo-motor areas V6Av and V6Ad in a progressively dorsal and anterior location with respect to V6. Besides different topographical organization, cytoarchitectonics, and functional properties, these three monkey areas can also be distinguished based on their patterns of cortico-cortical connections. Thanks to wide-field retinotopic mapping, areas V6 and V6Av have been also mapped in the human brain. Here, using a combined approach of resting-state functional connectivity and task-evoked activity by fMRI, we identified a new region in the anterior POS showing a pattern of functional properties and cortical connections that suggests a homology with the monkey area V6Ad. In addition, we observed distinct patterns of cortical connections associated with the human V6 and V6Av which are remarkably consistent with those showed by the anatomical tracing studies in the corresponding monkey areas. Consistent with recent models on visuo-spatial processing, our findings demonstrate a gradient of functional specialization and cortical connections within the human POS, with more posterior regions primarily dedicated to the analysis of visual attributes useful for spatial navigation and more anterior regions primarily dedicated to analyses of spatial information relevant for goal-directed action.

[1]  Gaspare Galati,et al.  Intentional signals during saccadic and reaching delays in the human posterior parietal cortex , 2011, The European journal of neuroscience.

[2]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[3]  Sabrina Pitzalis,et al.  Parallel motion signals to the medial and lateral motion areas V6 and MT+ , 2013, NeuroImage.

[4]  Martin Egelhaaf,et al.  Prototypical Components of Honeybee Homing Flight Behavior Depend on the Visual Appearance of Objects Surrounding the Goal , 2012, Front. Behav. Neurosci..

[5]  C. Galletti,et al.  The cortical connections of area V6: an occipito‐parietal network processing visual information , 2001, The European journal of neuroscience.

[6]  M. Fox,et al.  Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging , 2007, Nature Reviews Neuroscience.

[7]  Lotfi B Merabet,et al.  Visual Topography of Human Intraparietal Sulcus , 2007, The Journal of Neuroscience.

[8]  Michela Gamberini,et al.  Is the Medial Posterior Parietal Area V6A a Single Functional Area? , 2011, The Journal of Neuroscience.

[9]  C. Galletti,et al.  Occipital (V6) and parietal (V6A) areas in the anterior wall of the parieto‐occipital sulcus of the macaque: a cytoarchitectonic study , 2005, The European journal of neuroscience.

[10]  Thomas T. Liu,et al.  A component based noise correction method (CompCor) for BOLD and perfusion based fMRI , 2007, NeuroImage.

[11]  C. Galletti,et al.  Brain location and visual topography of cortical area V6A in the macaque monkey , 1999, The European journal of neuroscience.

[12]  Lauretta Passarelli,et al.  Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey , 2009, The Journal of comparative neurology.

[13]  Michele Furlan,et al.  A representation of changing heading direction in human cortical areas pVIP and CSv. , 2014, Cerebral cortex.

[14]  Lauri Parkkonen,et al.  Motion sensitivity of human V6: A magnetoencephalography study , 2009, NeuroImage.

[15]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[16]  Karl J. Friston,et al.  Detecting Activations in PET and fMRI: Levels of Inference and Power , 1996, NeuroImage.

[17]  Patrizia Fattori,et al.  Hand Orientation during Reach-to-Grasp Movements Modulates Neuronal Activity in the Medial Posterior Parietal Area V6A , 2009, The Journal of Neuroscience.

[18]  Lauretta Passarelli,et al.  Cortical Connections of Area V6Av in the Macaque: A Visual-Input Node to the Eye/Hand Coordination System , 2011, The Journal of Neuroscience.

[19]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[20]  I. Toni,et al.  Spatial and effector processing in the human parietofrontal network for reaches and saccades. , 2009, Journal of neurophysiology.

[21]  Talma Hendler,et al.  Center–periphery organization of human object areas , 2001, Nature Neuroscience.

[22]  Kaustubh Supekar,et al.  Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. , 2010, Cerebral cortex.

[23]  Timothy O. Laumann,et al.  Methods to detect, characterize, and remove motion artifact in resting state fMRI , 2014, NeuroImage.

[24]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[25]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[26]  K. Zilles,et al.  Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys , 2001, Neuron.

[27]  Karl J. Friston,et al.  Topological FDR for neuroimaging , 2010, NeuroImage.

[28]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[29]  C. Galletti,et al.  Functional Demarcation of a Border Between Areas V6 and V6A in the Superior Parietal Gyrus of the Macaque Monkey , 1996, The European journal of neuroscience.

[30]  E. Ross The Organization of Will , 1916, American Journal of Sociology.

[31]  C. Galletti,et al.  The cortical visual area V6: brain location and visual topography , 1999, The European journal of neuroscience.

[32]  Timothy S. Coalson,et al.  Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. , 2012, Cerebral cortex.

[33]  Andrew T. Smith,et al.  The Representation of Egomotion in the Human Brain , 2008, Current Biology.

[34]  D. Burr,et al.  A cortical area that responds specifically to optic flow, revealed by fMRI , 2000, Nature Neuroscience.

[35]  D. Heeger,et al.  Topographic organization for delayed saccades in human posterior parietal cortex. , 2005, Journal of neurophysiology.

[36]  Jonathan D. Nelson,et al.  Multiple Parietal Reach Regions in Humans: Cortical Representations for Visual and Proprioceptive Feedback during On-Line Reaching , 2009, The Journal of Neuroscience.

[37]  M. Corbetta,et al.  Functional Organization of Human Intraparietal and Frontal Cortex for Attending, Looking, and Pointing , 2003, The Journal of Neuroscience.

[38]  Martin I. Sereno,et al.  The human homologue of macaque area V6A , 2012, NeuroImage.

[39]  Sabrina Pitzalis,et al.  The functional role of the medial motion area V6 , 2013, Front. Behav. Neurosci..

[40]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[41]  R. Malach,et al.  The topography of high-order human object areas , 2002, Trends in Cognitive Sciences.

[42]  Richard A. Andersen,et al.  FMRI evidence for a 'parietal reach region' in the human brain , 2003, Experimental Brain Research.

[43]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[44]  C. Galletti,et al.  Spatial tuning of reaching activity in the medial parieto‐occipital cortex (area V6A) of macaque monkey , 2005, The European journal of neuroscience.

[45]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  C. Galletti,et al.  Role of the medial parieto-occipital cortex in the control of reaching and grasping movements , 2003, Experimental Brain Research.

[47]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[48]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[49]  C. Galletti,et al.  Early- and late-responding cells to saccadic eye movements in the cortical area V6A of macaque monkey , 2003, Experimental Brain Research.

[50]  J. Culham,et al.  The role of parietal cortex in visuomotor control: What have we learned from neuroimaging? , 2006, Neuropsychologia.

[51]  Gaspare Galati,et al.  Selectivity to Translational Egomotion in Human Brain Motion Areas , 2013, PloS one.

[52]  C. Galletti,et al.  Arm Movement‐related Neurons in the Visual Area V6A of the Macaque Superior Parietal Lobule , 1997, The European journal of neuroscience.

[53]  Leslie G. Ungerleider Two cortical visual systems , 1982 .

[54]  Michela Gamberini,et al.  ‘Arm‐reaching’ neurons in the parietal area V6A of the macaque monkey , 2001, The European journal of neuroscience.

[55]  Velia Cardin,et al.  Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. , 2010, Cerebral cortex.

[56]  Sabine Kastner,et al.  Functional organization of human posterior parietal cortex: grasping- and reaching-related activations relative to topographically organized cortex. , 2013, Journal of neurophysiology.

[57]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  Sabrina Pitzalis,et al.  The cortical visual area V6 in macaque and human brains , 2009, Journal of Physiology-Paris.

[59]  Dwight J. Kravitz,et al.  A new neural framework for visuospatial processing , 2011, Nature Reviews Neuroscience.

[60]  Rafael Malach,et al.  Large-Scale Mirror-Symmetry Organization of Human Occipito-Temporal Object Areas , 2003, Neuron.

[61]  M. Corbetta,et al.  Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions , 2008, Nature Neuroscience.

[62]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[63]  Justin L. Vincent,et al.  Precuneus shares intrinsic functional architecture in humans and monkeys , 2009, Proceedings of the National Academy of Sciences.

[64]  Guy A. Orban,et al.  Functional Mapping of Motion Regions , 2004 .

[65]  Velia Cardin,et al.  Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion , 2011, Journal of neurophysiology.

[66]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[67]  Ravi S. Menon,et al.  Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas , 2003, Experimental Brain Research.

[68]  C. Galletti,et al.  Wide-Field Retinotopy Defines Human Cortical Visual Area V6 , 2006, The Journal of Neuroscience.

[69]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V1 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[70]  Alain Berthoz,et al.  Selective role of lingual/parahippocampal gyrus and retrosplenial complex in spatial memory across viewpoint changes relative to the environmental reference frame , 2013, Behavioural Brain Research.

[71]  C. Galletti,et al.  Human V6: The Medial Motion Area , 2009, Cerebral cortex.