Energy absorption during compression and impact of dry elastic-plastic spherical granules

The discrete modelling and understanding of the particle dynamics in fluidized bed apparatuses, mixers, mills and others are based on the knowledge about the physical properties of particles and their mechanical behaviour during slow, fast and repeated stressing. In this paper model parameters (modulus of elasticity, stiffness, yield pressure, restitution coefficient and strength) of spherical granules (γ-Al2O3, zeolites 4A and 13X, sodium benzoate) with different mechanical behaviour have been measured by single particle compression and impact tests. Starting with the elastic compression behaviour of granules as described by Hertz theory, a new contact model was developed to describe the force-displacement behaviour of elastic-plastic granules. The aim of this work is to understand the energy absorption during compression (slow stressing velocity of 0.02 mm/s) and impact (the impact velocity of 0.5–4.5 m/s) of granules. For all examined granules the estimated energy absorption during the impact is found to be far lower than that during compression. Moreover, the measured restitution coefficient is independent of the impact velocity in the examined range and independent of the load intensity by compression (i.e. maximum compressive load). In the case of repeated loading with a constant load amplitude, the granules show cyclic hardening with increasing restitution coefficient up to a certain saturation in the plastic deformation. A model was proposed to describe the increase of the contact stiffness with the number of cycles. When the load amplitude is subsequently increased, further plastic deformation takes place and the restitution coefficient strongly decreases.

[1]  Michel Y. Louge,et al.  Measurements of the collision properties of small spheres , 1994 .

[2]  Jürgen Tomas,et al.  Particle Adhesion Fundamentals and Bulk Powder Consolidation , 2000 .

[3]  Y. Tsuji,et al.  Discrete particle simulation of two-dimensional fluidized bed , 1993 .

[4]  Charles S. Campbell,et al.  RAPID GRANULAR FLOWS , 1990 .

[5]  G. Weir,et al.  The coefficient of restitution for normal incident, low velocity particle impacts , 2005 .

[6]  J. Li,et al.  Euler-lagrange simulation of flow structure formation and evolution in dense gas-solid flows , 2003 .

[7]  M. Adams,et al.  Modelling collisions of soft agglomerates at the continuum length scale , 2004 .

[8]  S. Meyer Technische Mechanik , 1901 .

[9]  M. Louge,et al.  Measurements of impact properties of small, nearly spherical particles , 1997 .

[10]  Luís Marcelo Tavares,et al.  Modeling of particle fracture by repeated impacts using continuum damage mechanics , 2002 .

[11]  Aibing Yu,et al.  A simulation study of the effects of dynamic variables on the packing of spheres , 2001 .

[12]  G. Kuwabara,et al.  Restitution Coefficient in a Collision between Two Spheres , 1987 .

[13]  M. Louge,et al.  Anomalous behavior of normal kinematic restitution in the oblique impacts of a hard sphere on an elastoplastic plate. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  J. Jenkins,et al.  Plane simple shear of smooth inelastic circular disks: the anisotropy of the second moment in the dilute and dense limits , 1988, Journal of Fluid Mechanics.

[15]  R. L. Braun,et al.  Viscosity, granular‐temperature, and stress calculations for shearing assemblies of inelastic, frictional disks , 1986 .

[16]  DEM SIMULATION OF COMPRESSION TEST OF PARTICLES , 2002 .

[17]  J. Achenbach Wave propagation in elastic solids , 1962 .

[18]  Masayuki Horio,et al.  DEM simulation of fluidized beds for gas-phase olefin polymerization , 1999 .

[19]  Richard G. Mallon,et al.  Particle-dynamics calculations of gravity flow of inelastic, frictional spheres , 1988 .

[20]  R. Kreißig,et al.  Höhere Technische Mechanik , 2002 .

[21]  Hans Rumpf,et al.  Die Einzelkornzerkleinerung als Grundlage einer technischen Zerkleinerungswissenschaft , 1965 .

[22]  B. Briscoe,et al.  Compression of polymer bound alumina agglomerates at the micro deformation scale , 2004 .

[23]  Stefan Luding,et al.  Ultrafine Cohesive Powders: From Interparticle Contacts to Continuum Behaviour , 2007 .

[24]  Jam Hans Kuipers,et al.  A numerical study of fluidization behavior of Geldart A particles using a discrete particle model , 2004 .

[25]  H. Schiller,et al.  Theoretische Physik , 1923 .

[26]  Stefan Luding,et al.  Molecular Dynamics Simulations of Granular Materials , 2004 .

[27]  Gavin K. Reynolds,et al.  An experimental study of the variability in the properties and quality of wet granules , 2004 .

[28]  C. Thornton Coefficient of Restitution for Collinear Collisions of Elastic-Perfectly Plastic Spheres , 1997 .

[29]  M. Adams,et al.  Discrete particle-continuum fluid modelling of gas–solid fluidised beds , 2002 .

[30]  R. Kačianauskas,et al.  Discrete element method applied to multiobjective optimization of discharge flow parameters in hoppers , 2006 .

[31]  Bahram Ravani,et al.  Work equivalent composite coefficient of restitution , 2004 .

[32]  W. Goldsmith,et al.  Impact: the theory and physical behaviour of colliding solids. , 1960 .

[33]  Christine M. Hrenya,et al.  Computational Granular Dynamics - Models and Algorithms, Thorsten Pöschel and Thomas Schwager, Springer, 2005 , 2006 .

[34]  Mojtaba Ghadiri,et al.  Computer simulation of the effect of contact stiffness and adhesion on the fluidization behaviour of powders , 2007 .

[35]  J. Jenkins,et al.  Boundary conditions for plane flows of smooth, nearly elastic, circular disks , 1986, Journal of Fluid Mechanics.

[36]  Wolfgang Rodi,et al.  Calculation of turbulence-driven secondary motion in non-circular ducts , 1982, Journal of Fluid Mechanics.

[37]  Stefan Heinrich,et al.  Impact breakage of spherical granules: Experimental study and DEM simulation , 2006 .

[38]  Shintaro Takeuchi,et al.  Discrete element simulation of a flat-bottomed spouted bed in the 3-D cylindrical coordinate system , 2004 .

[39]  James D. Litster,et al.  Liquid-bound granule impact deformation and coefficient of restitution , 1998 .

[40]  Martin Georg Koller Elastischer Stoss von Kugeln auf dicke Platten , 1983 .

[41]  R. M. Davies,et al.  The determination of static and dynamic yield stresses using a steel ball , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  Robert H. Davis,et al.  Collisions of spheres with wet and dry porous layers on a solid wall , 2006 .

[43]  Agba D. Salman,et al.  An experimental study of the elastic rebound of spheres , 2001 .

[44]  K. Rohwer Technische Mechanik der Festen und Flüssigen Körper. Von F. Ziegler. Springer-Verlag, Wien–New York 1985. 560 S., 322 Abb., geb., DM 85,– , 1985 .

[45]  Gavin K. Reynolds,et al.  Impact deformation and rebound of wet granules , 2004 .

[46]  Colin Thornton,et al.  Numerical simulations of diametrical compression tests on agglomerates , 2004 .

[47]  R. S. Khurmi.pdf,et al.  Strength of Materials , 1908, Nature.

[48]  Peter Wriggers Introduction to Contact Mechanics , 2006 .

[49]  Michael H. Moys,et al.  Experimental study of oblique impacts with initial spin , 2006 .

[50]  Harald Kruggel-Emden,et al.  Review and extension of normal force models for the Discrete Element Method , 2007 .

[51]  Ali Hassanpour,et al.  Effect of size ratio on the behaviour of agglomerates embedded in a bed of particles subjected to shearing: DEM analysis , 2007 .

[52]  Ali Hassanpour,et al.  Single and bulk compressions of soft granules: Experimental study and DEM evaluation , 2005 .

[53]  Peter Eberhard,et al.  Numerical and experimental evaluation of the coefficient of restitution for repeated impacts , 2005 .

[54]  Wilfried Staudt Grundlagen der Werkstofftechnik , 1989 .

[55]  Spahn,et al.  Model for collisions in granular gases. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  Stefan Heinrich,et al.  A Discrete Element Study of Wet Particle-Particle Interaction During Granulation in a Spout Fluidized Bed , 2009 .

[57]  J. Kuipers,et al.  Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach. , 1996 .

[58]  R. C. Bowen,et al.  Mechanics of particle adhesion , 1994 .

[59]  F. Ziegler,et al.  Technische Mechanik der festen und flüssigen Körper , 1985 .

[60]  Hans J. Herrmann,et al.  Discrete element simulations of dense packings and heaps made of spherical and non-spherical particles , 2000 .

[61]  M. Oda,et al.  Micro-Deformation Mechanism of Shear Banding Process Based on Modified Distinct Element Method , 1999 .

[62]  Y. S. Cheong,et al.  The coefficient of restitution of different representative types of granules , 2007 .

[63]  Jam Hans Kuipers,et al.  Flow regimes in a spout-fluid bed : A combined experimental and simulation study , 2005 .

[64]  D. Jeffrey,et al.  Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield , 1984, Journal of Fluid Mechanics.

[65]  Jürgen Tomas,et al.  Adhesion of ultrafine particles—A micromechanical approach , 2007 .

[66]  Masao Sakamoto,et al.  Quasi-three-dimensional numerical simulation of spouted beds in cylinder , 2000 .

[67]  Mojtaba Ghadiri,et al.  Distinct element analysis of attrition of granular solids under shear deformation , 2006 .

[68]  J. Barbera,et al.  Contact mechanics , 1999 .

[69]  J. Lataillade,et al.  Dynamic investigation of hard viscoelastic materials by ball bouncing experiments , 1975 .

[70]  Gilles Flamant,et al.  DEM-LES of coal combustion in a bubbling fluidized bed. Part I: gas-particle turbulent flow structure , 2004 .

[71]  Jürgen Tomas,et al.  Assessment of Mechanical Properties of Cohesive Particulate Solids. Part 1: Particle Contact Constitutive Model , 2001 .

[72]  T. Schwager,et al.  Computational Granular Dynamics: Models and Algorithms , 2005 .

[73]  Martin Kohout,et al.  Multi-scale simulation of needle-shaped particle breakage under uniaxial compaction , 2007 .

[74]  Jürgen Tomas,et al.  Adhesion of ultrafine particles—Energy absorption at contact , 2007 .

[75]  Jpk Seville,et al.  The influence of DEM simulation parameters on the particle behaviour in a V-mixer , 2002 .

[76]  Hans J. Herrmann,et al.  Physics of granular media , 1995 .

[77]  D. Stoianovici,et al.  A Critical Study of the Applicability of Rigid-Body Collision Theory , 1996 .

[78]  Manoj Khanal,et al.  Impact crushing of particle–particle compounds—experiment and simulation , 2005 .

[79]  Colin Thornton,et al.  Discrete particle simulation of agglomerate impact coalescence , 1998 .

[80]  K. Johnson,et al.  The role of adhesion in the impact of elastic spheres , 1994 .

[81]  János Gyenis,et al.  Discrete particle simulation of flow regimes in bulk solids mixing and conveying , 1999 .

[82]  Y. Kishino,et al.  Disc Model Analysis of Granular Media , 1988 .

[83]  Christine M. Hrenya,et al.  Comparison of soft-sphere models to measurements of collision properties during normal impacts , 2005 .

[84]  N. Huber,et al.  Experimental analysis and modelling of particle-wall collisions , 1999 .

[85]  Kimiro Meguro,et al.  Granular Assembly Simulation for Ground Collapse , 1987 .

[86]  D. Wolf,et al.  Force Schemes in Simulations of Granular Materials , 1996 .

[87]  C. Thornton,et al.  A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres , 1998 .

[88]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[89]  Torsten Gröger,et al.  Modelling and measuring of cohesion in wet granular materials , 2003 .

[90]  A. Gaertner,et al.  Failure mechanism determination for industrial granules using a repeated compression test , 2003 .

[91]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[92]  Malcolm Powell,et al.  Measurement of particle interaction properties for incorporation in the discrete element method simulation , 2005 .

[93]  Yutaka Tsuji,et al.  Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe , 1992 .

[94]  Volkhard Buchholtz,et al.  Simulation of rotating drum experiments using non-circular particles , 1995, cond-mat/0203589.

[95]  T Pöschel,et al.  Extremal collision sequences of particles on a line: optimal transmission of kinetic energy. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[96]  González-Miranda Jm,et al.  Chaotic systems with a null conditional Lyapunov exponent under nonlinear driving. , 1996 .

[97]  Brian Scarlett,et al.  Breakage behaviour of enzyme granules in a repeated impact test , 2003 .

[98]  Farhang Radjai,et al.  Micromechanics of granular materials , 2009 .

[99]  P. McCormick,et al.  An investigation of the effect of powder on the impact characteristics between a ball and a plate using free falling experiments , 1998 .

[100]  R. Venugopal,et al.  3D simulation of charge motion in tumbling mills by the discrete element method , 2001 .

[101]  André Lungfiel Ermittlung von Belastungsgrößen mittels der Diskrete-Elemente-Methode für die Auslegung von Sturzmühlen , 2001 .

[102]  C. Thornton,et al.  Rebound behaviour of spheres for plastic impacts , 2003 .

[103]  Evangelos Tsotsas,et al.  Mixing of particles in rotary drums: A comparison of discrete element simulations with experimental results and penetration models for thermal processes , 2006 .

[104]  S. C. Hunter Energy absorbed by elastic waves during impact , 1957 .

[105]  R. Davé,et al.  MEASUREMENTS OF COLLISIONAL PROPERTIES OF SPHERES USING HIGH-SPEED VIDEO ANALYSIS , 1997 .