Cauchy biorthogonal polynomials

The paper investigates the properties of certain biorthogonal polynomials appearing in a specific simultaneous Hermite-Pade approximation scheme. Associated with any totally positive kernel and a pair of positive measures on the positive axis we define biorthogonal polynomials and prove that their zeros are simple and positive. We then specialize the kernel to the Cauchy kernel 1x+y and show that the ensuing biorthogonal polynomials solve a four-term recurrence relation, have relevant Christoffel-Darboux generalized formulas, and their zeros are interlaced. In addition, these polynomials solve a combination of Hermite-Pade approximation problems to a Nikishin system of order 2. The motivation arises from two distant areas; on the one hand, in the study of the inverse spectral problem for the peakon solution of the Degasperis-Procesi equation; on the other hand, from a random matrix model involving two positive definite random Hermitian matrices. Finally, we show how to characterize these polynomials in terms of a Riemann-Hilbert problem.

[1]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients: I. General theory and τ-function , 1981 .

[2]  Guillermo López Lagomasino,et al.  Hermite-Pade' approximation and simultaneous quadrature formulas , 2004, J. Approx. Theory.

[3]  Александр Иванович Аптекарев,et al.  Асимптотика отношения полиномов Эрмита - Паде@@@Ratio asymptotics of Hermite - Padé polynomials for Nikishin systems , 2005 .

[4]  M. L. Mehta,et al.  Matrices coupled in a chain: I. Eigenvalue correlations , 1998 .

[5]  V. N. Sorokin,et al.  Rational Approximations and Orthogonality , 1991 .

[6]  D. Sattinger,et al.  Multi-peakons and a theorem of Stieltjes , 1999, solv-int/9903011.

[7]  Walter Van Assche,et al.  Riemann-Hilbert Problems for Multiple Orthogonal Polynomials , 2001 .

[8]  K. Mclaughlin,et al.  Asymptotics and integrable structures for biorthogonal polynomials associated to a random two-matrix model , 2001 .

[9]  Darryl D. Holm,et al.  An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.

[10]  F. Gantmacher,et al.  Oscillation matrices and kernels and small vibrations of mechanical systems , 1961 .

[11]  E. M. Nikišin ON SIMULTANEOUS PADÉ APPROXIMANTS , 1982 .

[12]  Richard Beals,et al.  Multipeakons and the Classical Moment Problem , 1999, solv-int/9906001.

[13]  Differential Systems for Biorthogonal Polynomials Appearing in 2-Matrix Models and the Associated Riemann–Hilbert Problem , 2002, nlin/0208002.

[14]  J. Cooper TOTAL POSITIVITY, VOL. I , 1970 .

[15]  J. Szmigielski,et al.  Cubic string boundary value problems and Cauchy biorthogonal polynomials , 2009, 0904.2188.

[16]  Colin W. Cryer,et al.  The LU-factorization of totally positive matrices , 1973 .

[17]  Marco Bertola,et al.  Biorthogonal polynomials for two-matrix models with semiclassical potentials , 2006, J. Approx. Theory.

[18]  Hans Lundmark,et al.  Degasperis-Procesi peakons and the discrete cubic string , 2005, nlin/0503036.

[19]  Jeannette Van Iseghem,et al.  Algebraic Aspects of Matrix Orthogonality for Vector Polynomials , 1997 .

[20]  Maurice Duits,et al.  Universality in the two‐matrix model: a Riemann‐Hilbert steepest‐descent analysis , 2008, 0807.4814.

[21]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[22]  J. Szmigielski,et al.  The Cauchy Two-Matrix Model , 2008, 0804.0873.

[23]  Antonio Degasperis,et al.  Symmetry and perturbation theory , 1999 .

[24]  Hans Lundmark,et al.  Multi-peakon solutions of the Degasperis–Procesi equation , 2003, nlin/0503033.

[25]  A. Aptekarev,et al.  The Genetic Sums' Representation for the Moments of a System of Stieltjes Functions and its Application , 2000 .

[26]  Strong asymptotics for Cauchy biorthogonal polynomials , 2012 .

[27]  M. Bertola,et al.  Moment determinants as isomonodromic tau functions , 2008, 0805.0446.

[28]  A. B. J. Kuijlaars,et al.  A Riemann-Hilbert problem for biorthogonal polynomials , 2003 .

[29]  Duality, Biorthogonal Polynomials¶and Multi-Matrix Models , 2001, nlin/0108049.

[30]  C. Cryer Some properties of totally positive matrices , 1976 .