Stieltjes-Pick-Bernstein-Schoenberg and their connection to complete monotonicity

This paper is mainly a survey of published results. We recall the definition of positive definite and (conditionally) negative definite functions on abelian semigroups with involution, and we consider three main examples: R k ,[0,1[ k ,N0‐the first with the inverse involution and the two others with the identical involution. Schoenberg’s theorem explains the possibility of constructing rotation invariant positive definite and conditionally negative definite functions on euclidean spaces via completely monotonic functions and Bernstein functions. It is therefore important to be able to decide complete monotonicity of a given function. We combine complete monotonicity with complex analysis via the relation to Stieltjes functions and Pick functions and we give a survey of the many interesting relations between these classes of functions and completely monotonic functions, logarithmically completely monotonic functions and Bernstein functions. In Section 6 it is proved that logx ( x) and 0 (x) are logarithmically completely monotonic (where ( x) = 0 (x)/( x)), and these results are new as far as we know. We end with a list of completely monotonic functions related to the Gamma function.

[1]  Horst Alzer,et al.  Gamma function inequalities , 2008, Numerical Algorithms.

[2]  Christian Berg,et al.  Some classes of completely monotonic functions, II , 2006 .

[3]  Chao-Ping Chen,et al.  Some completely monotonic functions involving the gamma and polygamma functions , 2006, Journal of the Australian Mathematical Society.

[4]  Mourad E. H. Ismail,et al.  Completely monotonic functions involving the gamma and q-gamma functions , 2005 .

[5]  A. Steerneman,et al.  Spherical distributions: Schoenberg (1938) revisited , 2005 .

[6]  Christian Berg,et al.  On a conjecture of Clark and Ismail , 2005, J. Approx. Theory.

[7]  R. Schilling,et al.  Function Spaces as Dirichlet Spaces (About a Paper by Maz'ya and Nagel) , 2005 .

[8]  Henrik L. Pedersen Canonical products of small order and related Pick functions , 2005 .

[9]  Mourad E. H. Ismail,et al.  Theory and Applications of Special Functions , 2005 .

[10]  M. Ismail,et al.  Theory and applications of special functions : a volume dedicated to Mizan Rahman , 2005 .

[11]  C. Berg On a Generalized Gamma Convolution Related to the q-Calculus , 2005 .

[12]  C. Berg On powers of Stieltjes moment sequences, II , 2004, math/0412340.

[13]  C. Berg Integral Representation of Some Functions Related to the Gamma Function , 2004, math/0411550.

[14]  Feng Qi,et al.  Complete Monotonicities of Functions Involving the Gamma and Digamma Functions , 2004 .

[15]  F. Steutel,et al.  Infinite Divisibility of Probability Distributions on the Real Line , 2003 .

[16]  M. Ismail,et al.  INEQUALITIES INVOLVING GAMMA AND PSI FUNCTIONS , 2003 .

[17]  Christian Berg,et al.  Pick Functions Related to the Gamma Function , 2002 .

[18]  Christian Berg,et al.  Some classes of completely monotonic functions , 2002 .

[19]  Christian Berg,et al.  A completely monotone function related to the Gamma function , 2001 .

[20]  R. Wolpert Lévy Processes , 2000 .

[21]  R. Schilling Subordination in the sense of Bochner and a related functional calculus , 1998, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[22]  T. Stieltjes Recherches sur les fractions continues , 1995 .

[23]  Zoltán Sasvári,et al.  Positive definite and definitizable functions , 1994 .

[24]  C. Berg,et al.  Generation of generators of holomorphic semigroups , 1993, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[25]  M. E. Muldoon,et al.  Completely monotonic functions associated with the gamma function and its q-analogues , 1986 .

[26]  C. Berg,et al.  Harmonic Analysis on Semigroups: Theory of Positive Definite and Related Functions , 1984 .

[27]  Fonctions definies negatives et majoration de Schur , 1984 .

[28]  C. Berg Quelques remarques sur le cone de Stieltjes , 1980 .

[29]  C. Berg The Stieltjes cone is logarithmically convex , 1979 .

[30]  Christian Berg,et al.  Potential Theory on Locally Compact Abelian Groups , 1975 .

[31]  W. Donoghue Monotone Matrix Functions and Analytic Continuation , 1974 .

[32]  F. Hirsch Intégrales de résolvantes et calcul symbolique , 1972 .

[33]  N. Akhiezer,et al.  The Classical Moment Problem. , 1968 .

[34]  R. Horn On infinitely divisible matrices, kernels, and functions , 1967 .

[35]  Fonctions opérant sur les fonctions définies négatives , 1967 .

[36]  G. Reuter Über eine Volterrasche Integralgleichung mit totalmonotonem Kern , 1956 .

[37]  T. Teichmann,et al.  Harmonic Analysis and the Theory of Probability , 1957, The Mathematical Gazette.

[38]  D. F. Hays,et al.  Table of Integrals, Series, and Products , 1966 .

[39]  E. C. Titchmarsh,et al.  The Laplace Transform , 1991, Heat Transfer 1.

[40]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[41]  I. J. Schoenberg,et al.  Metric spaces and positive definite functions , 1938 .

[42]  S. Bernstein,et al.  Sur les fonctions absolument monotones , 1929 .

[43]  Georg Pick,et al.  Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden , 1915 .

[44]  É. Picard,et al.  Correspondance d'Hermite et de Stieltjes , 2022 .