Realistic limits to computation

As far as ultra-dense crossbars are related to correspondingly dense wire arrays, the crossbar route to tera-scale integration depends on the availability of preparation techniques for wire arrays with density of 106 cm−1 or more. This linear density implies, for a planar arrangement, a pitch of 10 nm or less, which not only is at the limits of the current technical possibilities, but also can modify appreciably the band structure of silicon. A dramatic increase of density could only be achieved if it were possible to organize the nanowires in a three-dimensional fashion still exploiting the planar technology. In this work processes are described for the fabrication of out-of-plane, vertically arranged, polycrystalline silicon nanowires via a rigorously top-down batch process. These techniques are consistent with the production of wire arrays with linear density (projected on the surface) larger than that achievable with any other proposed top-down process. Used for the fabrication of the bottom wire arrays of crossbars, these processes should eventually allow a cross-point amount per unit area in excess of 1012 cm−2, thus providing candidate technologies for ultra tera scale integration. The technique developed for such out-of-plane crossbars can be used to implement new functions like coils, solenoids and transformers.

[1]  Michael C. McAlpine,et al.  Development of ultra-high density silicon nanowire arrays for electronics applications , 2008 .

[2]  G. Micheli,et al.  Polysilicon Nanowire Transistors and Arrays Fabricated With the Multispacer Technique , 2011, IEEE Transactions on Nanotechnology.

[3]  Dmitri B Strukov,et al.  Four-dimensional address topology for circuits with stacked multilayer crossbar arrays , 2009, Proceedings of the National Academy of Sciences.

[4]  Gianfranco Cerofolini,et al.  Molecular electronics in silico , 2008 .

[5]  Hossam Haick,et al.  Tuning the electrical properties of Si nanowire field-effect transistors by molecular engineering. , 2009, Small.

[6]  A. Pierre,et al.  Chemistry of aerogels and their applications. , 2002, Chemical reviews.

[7]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[8]  L. L. Vadasz,et al.  Silicon-gate technology , 1969, IEEE Spectrum.

[9]  D. Strukov,et al.  Prospects for terabit-scale nanoelectronic memories , 2004 .

[10]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[11]  Hylke B. Akkerman,et al.  Towards molecular electronics with large-area molecular junctions , 2006, Nature.

[12]  Valeria Casuscelli,et al.  Steps farther towards micro-nano-mole integration via the multispacer patterning technique , 2007 .

[13]  M. Roukes,et al.  Plenty of room, indeed. , 2001, Scientific American.

[14]  A. Modelli,et al.  Chemical, energetic, and geometric heterogeneity of device-quality (1 0 0) surfaces of single crystalline silicon after HFaq etching , 2008 .

[15]  Yiping Zhao,et al.  Multi-silicon ridge nanofabrication by repeated edge lithography , 2009, Nanotechnology.

[16]  P. Franzon,et al.  Controlled modulation of conductance in silicon devices by molecular monolayers. , 2006, Journal of the American Chemical Society.

[17]  I. Fragalà,et al.  Functionalization of atomically flat, dihydrogen terminated, 1×1 (1 0 0) silicon via reaction with 1-alkyne , 2005 .

[18]  Luisa Ciobanu,et al.  Measuring reaction kinetics by using multiple microcoil NMR spectroscopy. , 2003, Angewandte Chemie.

[19]  D. Strukov,et al.  CMOL: Devices, Circuits, and Architectures , 2006 .

[20]  Charles M. Lieber,et al.  Directed assembly of one-dimensional nanostructures into functional networks. , 2001, Science.

[21]  C. W. Hagen,et al.  Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art , 2009, Nanotechnology.

[22]  S. Solmi,et al.  Ultradense silicon nanowire arrays produced via top-down planar technology , 2011 .

[23]  Gregory S. Snider,et al.  A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology , 1998 .

[24]  Yusuf Leblebici,et al.  Complete nanowire crossbar framework optimized for the multi-spacer patterning technique , 2009, CASES '09.

[25]  C. Degen,et al.  Force-detected nuclear magnetic resonance: recent advances and future challenges , 2010, Nanotechnology.

[26]  C. Galati,et al.  Si 2p XPS spectrum of the hydrogen‐terminated (100) surface of device‐quality silicon , 2003 .

[27]  A. Forchel,et al.  Selective ultrahigh vacuum dry etching process for ZnSe-based II–VI semiconductors , 2001 .

[28]  G. Ferla,et al.  Toward a Hybrid Micro-nanoelectronics , 2002 .

[29]  Konstantin Nikolic,et al.  A short review of nanoelectronic architectures , 2004 .

[30]  Konstantin K. Likharev,et al.  Hybrid CMOS/Nanoelectronic Circuits: Opportunities and Challenges , 2008 .

[31]  M. Reed,et al.  Molecular random access memory cell , 2001 .

[32]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[33]  R. Stanley Williams,et al.  Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices , 2004 .

[34]  Marco Camalleri,et al.  Strategies for nanoelectronics , 2005 .

[35]  J. Heath,et al.  Bridging Dimensions: Demultiplexing Ultrahigh-Density Nanowire Circuits , 2005, Science.

[36]  M. Ferri,et al.  Terascale integration via a redesign of the crossbar based on a vertical arrangement of poly-Si nanowires , 2010 .

[37]  M. V. Shutov,et al.  Development of low field nuclear magnetic resonance microcoils , 2005 .

[38]  Gregory S. Snider,et al.  ‘Memristive’ switches enable ‘stateful’ logic operations via material implication , 2010, Nature.

[39]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[40]  Gianfranco Cerofolini,et al.  Realistic limits to computation. II. The technological side , 2006 .

[41]  Jeffrey Bokor,et al.  Sublithographic nanofabrication technology for nanocatalysts and DNA chips , 2003 .

[42]  Cerofolini,et al.  Silicon amorphization during ion implantation as a thermal phenomenon. , 1987, Physical review. B, Condensed matter.

[43]  L. Renna,et al.  A hybrid approach to nanoelectronics , 2005 .

[44]  L. Chua Memristor-The missing circuit element , 1971 .

[45]  A. Pugh The art of electronics. 2nd edn: By Paul Horowitz and Winfield Hill. Pp. 1125. Cambridge University Presss. 1989. £29.95, US$49.50 , 1990 .

[46]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[47]  R. Stanley Williams,et al.  Direct Observation of Nanoscale Switching Centers in Metal/Molecule/Metal Structures , 2004 .

[48]  Giovanni Campardo,et al.  Memory mass storage , 2011 .

[49]  Gianfranco Cerofolini Realistic limits to computation I. Physical limits , 2006 .

[50]  Tohru Yamamoto,et al.  Two-dimensional molecular electronics circuits. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[51]  Charles M. Lieber,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001, Science.

[52]  U. Gösele,et al.  Growth, thermodynamics, and electrical properties of silicon nanowires. , 2010, Chemical reviews.

[53]  D. C. Flanders,et al.  Generation of <50 nm period gratings using edge defined techniques , 1983 .

[54]  Karol Putyera,et al.  Dekker Encyclopedia of Nanoscience and Nanotechnology , 2004 .

[55]  Ernesto Bussola,et al.  What Is a Memory, That It May Comprehend Itself? , 2011 .

[56]  L. Canham,et al.  Gaining light from silicon , 2000, Nature.

[57]  F. Faggin,et al.  Silicon gate technology , 1970 .

[58]  Behzad Razavi,et al.  Stacked inductors and transformers in CMOS technology , 2001 .

[59]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[60]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[61]  G. Cerofolini,et al.  A hybrid micro-nano-molecular route for nonvolatile memories , 2006 .

[62]  S. Solmi,et al.  Crossbar architecture for tera-scale integration , 2011 .

[63]  James R Heath,et al.  Superlattice nanowire pattern transfer (SNAP). , 2008, Accounts of chemical research.

[64]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[65]  J. Tour,et al.  Direct covalent grafting of conjugated molecules onto Si, GaAs, and Pd surfaces from aryldiazonium salts. , 2004, Journal of the American Chemical Society.

[66]  L. Meda,et al.  A model for damage release in ion‐implanted silicon , 1988 .

[67]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[68]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[69]  Jeffrey Bokor,et al.  Fabrication of Sub-10-nm Silicon Nanowire Arrays by Size Reduction Lithography , 2003 .

[70]  Gianfranco Cerofolini The Litho-to-Nano link , 2009 .

[71]  R. Williams,et al.  Nano/CMOS architectures using a field-programmable nanowire interconnect , 2007 .

[72]  Konstantin K. Likharev,et al.  CrossNets: Neuromorphic Hybrid CMOS/Nanoelectronic Networks , 2011 .

[73]  C. Galati,et al.  The addition of functional groups to silicon via hydrosilation of 1-alkynes at hydrogen-terminated, 1 × 1 reconstructed, (100) silicon surfaces , 2003 .

[74]  Konstantin K. Likharev,et al.  Electronics Below 10 nm , 2003 .

[75]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[76]  Zhenan Bao,et al.  Control of topography, stress and diffusion at molecule–metal interfaces , 2005, cond-mat/0510371.

[77]  Anatoli Korkin,et al.  Nano and Giga Challenges in Microelectronics , 2003 .

[78]  I. Fragalà,et al.  The early oxynitridation stages of hydrogen-terminated (100) silicon after exposure to N2:N2O. III. Initial conditions , 2003 .

[79]  Giancarlo Mauri,et al.  A surveillance system for early-stage diagnosis of endogenous diseases by swarms of nanobots , 2010 .

[80]  Paul Horowitz,et al.  The Art of Electronics , 1980 .

[81]  K. Richter,et al.  Introducing Molecular Electronics , 2005 .

[82]  Paolo Amato,et al.  The multi-spacer patterning technique: a non-lithographic technique for terascale integration , 2008 .

[83]  Lin Chao Technology with the Environment in Mind , 2008 .

[84]  C. Lieber,et al.  Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems , 2003, Science.

[85]  S.W. Nam,et al.  High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications , 2010, 2010 Symposium on VLSI Technology.

[86]  P. Lugli,et al.  Read-Out Design Rules for Molecular Crossbar Architectures , 2009, IEEE Transactions on Nanotechnology.